Patents by Inventor Ju-Hyun Sun

Ju-Hyun Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121924
    Abstract: A water-cooled heat dissipation module assembly capable of cooling a power module of a vehicle driving inverter system using a battery or fuel cell. The water-cooled heat dissipation module assembly includes a housing unit provided in the form of a housing having an opening portion at least partially opened at one side thereof. The housing unit and at least a part of a rim region of the cooling unit are made of a plastic material, and the housing unit and the cooling unit are joined to each other by plastic welding using a laser.
    Type: Application
    Filed: August 4, 2022
    Publication date: April 11, 2024
    Inventors: Kwan Ho RYU, Jeong Keun LEE, Min Woo LEE, Ju Hyun SUN, Tae Keun PARK, Kang Wook PARK, Lee Cheol JI, Hyeok Chul YANG, Tae Heon KIM, Keun Jae LEE
  • Publication number: 20200347797
    Abstract: There is provided a method for manufacturing a piston for a vehicle engine, including: a piston assembling step of forming a piston assembly by assembling a first piston part, a bonding member and a second piston part, wherein the first piston part has two or more bonding surfaces separated from each other and extended in a circumferential direction, and the second piston part has two or more bonding surfaces separated from each other and extended in the circumferential direction; a piston diffusion brazing step of diffusion brazing the first piston part, the bonding member and the second piston part under an open atmosphere by heating the formed piston assembly; and a piston cooling step of cooling a piston unit formed by diffusion brazing the first piston part, the bonding member and the second piston part.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Applicant: Dong Yang Piston Co., Ltd.
    Inventors: Jun-Kui YANG, Kwan-Ho RYU, Jeong-Keun LEE, Ju-Hyun SUN, Sang-Bean PARK, Jung-Hun JI
  • Patent number: 10724466
    Abstract: There is provided a method for manufacturing a piston, including: a piston assembling step of forming a piston assembly by assembling a first piston part, a bonding member and a second piston part, wherein the first piston part has two or more bonding surfaces separate from each other and extending in a circumferential direction, and the second piston part has two or more bonding surfaces separate from each other and extending in the circumferential direction; a piston diffusion brazing step of diffusion brazing the first piston part, the bonding member and the second piston part under an open atmosphere by heating the formed piston assembly; and a piston cooling step of cooling a piston unit formed by diffusion brazing the first piston part, the bonding member and the second piston part.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 28, 2020
    Assignee: DONG YANG PISTON CO., LTD.
    Inventors: Jun-Kui Yang, Kwan-Ho Ryu, Jeong-Keun Lee, Ju-Hyun Sun, Sang-Bean Park, Jung-Hun Ji
  • Publication number: 20180161901
    Abstract: There is provided a method for manufacturing a piston for a vehicle engine, including: a piston assembling step of forming a piston assembly by assembling a first piston part, a bonding member and a second piston part, wherein the first piston part has two or more bonding surfaces separate from each other and extending in a circumferential direction, and the second piston part has two or more bonding surfaces separate from each other and extending in the circumferential direction; a piston diffusion brazing step of diffusion brazing the first piston part, the bonding member and the second piston part under an open atmosphere by heating the formed piston assembly; and a piston cooling step of cooling a piston unit formed by diffusion brazing the first piston part, the bonding member and the second piston part.
    Type: Application
    Filed: November 20, 2017
    Publication date: June 14, 2018
    Inventors: Jun-Kui YANG, Kwan-Ho RYU, Jeong-Keun LEE, Ju-Hyun SUN, Sang-Bean PARK, Jung-Hun JI
  • Publication number: 20180156156
    Abstract: There is provided a method for manufacturing a piston, including: a piston assembling step of forming a piston assembly by assembling a first piston part, a bonding member and a second piston part, wherein the first piston part has two or more bonding surfaces separate from each other and extending in a circumferential direction, and the second piston part has two or more bonding surfaces separate from each other and extending in the circumferential direction; a piston diffusion brazing step of diffusion brazing the first piston part, the bonding member and the second piston part under an open atmosphere by heating the formed piston assembly; and a piston cooling step of cooling a piston unit formed by diffusion brazing the first piston part, the bonding member and the second piston part.
    Type: Application
    Filed: November 20, 2017
    Publication date: June 7, 2018
    Inventors: Jun-Kui YANG, Kwan-Ho RYU, Jeong-Keun LEE, Ju-Hyun SUN, Sang-Bean PARK, Jung-Hun JI
  • Patent number: 9734994
    Abstract: Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 ?m to 5 ?m and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: August 15, 2017
    Assignee: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Seung-Yong Shin, Kyoung-Il Moon, Ju-Hyun Sun, Chang-Hun Lee
  • Publication number: 20160068943
    Abstract: The present invention relates to a sputtering target of a multi-component single body, a preparation method thereof, and a method for fabricating a multi-component alloy-based nanostructured thin film using the same. The sputtering target according to the present invention comprises an amorphous or partially crystallized glass-forming alloy system composed of a nitride forming metal element, which is capable of reacting with nitrogen to form a nitride, and a non-nitride forming element which has no or low solid solubility in the nitride forming metal element and does not react with nitrogen or has low reactivity with nitrogen, wherein the nitrogen forming metal element comprises at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Y, Mo, W, Al, and Si, and the non-nitride forming element comprises at least one element selected from Mg, Ca, Sc, Ni, Cu, Ag, In, Sn, La, Au, and Pb.
    Type: Application
    Filed: October 28, 2015
    Publication date: March 10, 2016
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Seung Yong SHIN, Kyoung Il MOON, Ju Hyun SUN, Chang Hun LEE, Jung Chan BAE
  • Publication number: 20140346038
    Abstract: Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 ?m to 5 ?m and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).
    Type: Application
    Filed: December 4, 2012
    Publication date: November 27, 2014
    Inventors: Seung-Yong Shin, Kyoung-Il Moon, Ju-Hyun Sun, Chang-Hun Lee
  • Patent number: 8691142
    Abstract: Zr—Ti—Ni(Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys is expressed as: ZraTibNic (Formula 1) where a, b and c denote atomic % of Zr, Ti and Ni, respectively; 47?a?52; 24?b?30; 22?c?26; and 0.3<c/(a+c)<0.35, or ZraTibNicCud (Formula 2) where a, b, c and d denote atomic % of Zr, Ti, Ni and Cu respectively; 48?a?60; 20?b?28; 19?c+d?30; 3?d?12; and 0.12<d/(c+d)?0.5. Including Zr(Ti) solid solution phase as major constituent phase, the alloy compositions have lower liquidus temperature than those of conventional alloys and they include a little amount of Cu or does not include it at all. When the alloy is used as filler alloy for brazing titanium and titanium alloys, brazing can be performed at remarkably low temperature. This can inhibit the microstructure of titanium base metal from changing and being damaged, keeping the titanium base metal preserving inherent properties after brazing.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: April 8, 2014
    Assignee: Korea Institute of Industrial Technology
    Inventors: Seung-Yong Shin, Dong-Myoung Lee, Ju-Hyun Sun, Yong-Hwan Kim, Dong-Han Kang
  • Patent number: 8486330
    Abstract: Disclosed is Zr—Ti—Ni(Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys. The Zr—Ti—Ni(Cu)-based alloy composition is expressed as: ZraTibNic (Formula 1) where a, b and c denote atomic % of Zr, Ti and Ni, respectively; 47?a?52; 24?b?30; 22?c?26; and 0.3<c/(a+c)<0.35, or ZraTibNicCud (Formula 2) where a, b, c and d denote atomic % of Zr, Ti, Ni and Cu respectively; 48?a?60; 20?b?28; 19?c+d?30; 3?d?12; and 0.12<d/(c+d)?0.5. Including Zr(Ti) solid solution phase as its major constituent phase, the alloy compositions of this invention have lower liquidus temperature than those of conventional alloys and they include a little amount of Cu or does not include it at all. When alloy of the present invention is used as filler alloy for brazing titanium and titanium alloys, brazing can be performed at remarkably low temperature.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 16, 2013
    Assignees: Korea Institute of Industrial Technology, Yosan Eng. Ltd.
    Inventors: Seung-Yong Shin, Dong-Myoung Lee, Ju-Hyun Sun, Yong-Hwan Kim, Dong-Han Kang
  • Publication number: 20120275947
    Abstract: Zr—Ti—Ni(Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys is expressed as: ZraTibNic (Formula 1) where a,b and c denote atomic % of Zr, Ti and Ni, respectively; 47?a?52; 24?b?30; 22?c?26; and 0.3<c/(a+c)<0.35, or ZraTibNicCud (Formula 2) where a,b,c and d denote atomic % of Zr, Ti, Ni and Cu respectively; 48?a?60; 20?b?28; 19?c+d?30; 3?d?12; and 0.12<d/(c+d)?0.5. Including Zr(Ti) solid solution phase as major constituent phase, the alloy compositions have lower liquidus temperature than those of conventional alloys and they include a little amount of Cu or does not include it at all. When the alloy is used as filler alloy for brazing titanium and titanium alloys, brazing can be performed at remarkably low temperature. This can inhibit the microstructure of titanium base metal from changing and being damaged, keeping the titanium base metal preserving inherent properties after brazing.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 1, 2012
    Applicants: YOSAN ENG. LTD., KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: SEUNG-YONG SHIN, DONG-MYOUNG LEE, JU-HYUN SUN, YONG-HWAN KIM, DONG-HAN KANG
  • Publication number: 20120247948
    Abstract: The present invention relates to a sputtering target of a multi-component single body, a preparation method thereof, and a method for fabricating a multi-component alloy-based nanostructured thin film using the same. The sputtering target according to the present invention comprises an amorphous or partially crystallized glass-forming alloy system composed of a nitride forming metal element, which is capable of reacting with nitrogen to form a nitride, and a non-nitride forming element which has no or low solid solubility in the nitride forming metal element and does not react with nitrogen or has low reactivity with nitrogen, wherein the nitrogen forming metal element comprises at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Y, Mo, W, Al, and Si, and the non-nitride forming element comprises at least one element selected from Mg, Ca, Sc, Ni, Cu, Ag, In, Sn, La, Au, and Pb.
    Type: Application
    Filed: November 19, 2010
    Publication date: October 4, 2012
    Inventors: Seung Yong Shin, Kyoung II Moon, Ju Hyun Sun, Chang Hun Lee, Jung Chan Bae
  • Publication number: 20110211987
    Abstract: Disclosed is Zr—Ti—Ni (Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys. The Zr—Ti—Ni (Cu)-based alloy composition is expressed as: ZraTibNic (Formula 1) where a,b and c denote atomic % of Zr, Ti and Ni, respectively; 47<a<52; 24?b?30; 22<c<26; and 0.3<c/(a+c)<0.35, or ZraTibNicCud (Formula 2) where a,b,c and d denote atomic % of Zr, Ti, Ni and Cu respectively; 48?a?60; 20<b<28; 19<c+d<30; 3<d<12; and 0.12<d/(c+d)?0.5. Including Zr(Ti) solid solution phase as its major constituent phase, the alloy compositions of this invention have lower liquidus temperature than those of conventional alloys and they include a little amount of Cu or does not include it at all. When alloy of the present invention is used as filler alloy for brazing titanium and titanium alloys, brazing can be performed at remarkably low temperature.
    Type: Application
    Filed: August 7, 2008
    Publication date: September 1, 2011
    Applicants: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY, YOSAN ENG. LTD.
    Inventors: Seung-Yong Shin, Dong-Myoung Lee, Ju-Hyun Sun, Yong-Hwan Kim, Dong-Han Kang