Patents by Inventor Juan Cai

Juan Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150031530
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 29, 2015
    Inventors: Xianghong HAO, Juan CAI
  • Patent number: 8765625
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 1, 2014
    Assignee: Shubin, Inc.
    Inventors: Xianghong Hao, Juan Cai
  • Patent number: 8258070
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes supported precious group metal catalysts that are coated onto different layers of the substrate for the emission control catalyst. Zeolites of one or more types are added to the emission control catalyst as a hydrocarbon absorbing component to boost the low temperature performance of the emission control catalyst. Y zeolite is used by itself or mixed with other zeolites to enhance hydrocarbon storage at low temperatures.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 4, 2012
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Juan Cai, Chaitanya Sampara
  • Publication number: 20120171797
    Abstract: Apparatus and method for seasoning an idled deposition chamber prior to growing an epitaxial layer. A dopant containing source gas, such as a Mg-containing source gas, is introduced to an MOCVD chamber after the chamber has been idled and prior to the chamber growing a film containing the dopant on a substrate. In a multi-chambered deposition system, a non-p-type epitaxial layer of an LED film stack is grown over a substrate in a first deposition chamber while a seasoning process is executed in a second deposition chamber with a p-type dopant-containing source gas. Subsequent to the seasoning process, a p-type epitaxial layer of the LED film stack is grown on the substrate in the second deposition chamber with improved control of p-type dopant concentration in the p-type epitaxial layer.
    Type: Application
    Filed: December 7, 2011
    Publication date: July 5, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sang Won KANG, Jie SU, Jie CUI, Juan CAI
  • Patent number: 8039265
    Abstract: The oxygen content of metal species in a heterogeneous catalyst is determined using volumetric adsorption measurements. Such measurements are employed to quantify the amount of reduction gas that it takes to reduce metal species of a catalyst sample, and the oxygen content is derived from this amount and the reaction stoichiometry. This method can be applied to mono-metallic and multi-metallic heterogeneous catalysts and has been shown to provide at least 10 times better detection sensitivity than typical TCDs in TPR-TCD methods.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: October 18, 2011
    Assignee: Nanostellar, Inc.
    Inventors: Juan Cai, Kyle L. Fujdala, Mats I. Larsson
  • Publication number: 20110143921
    Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Inventors: XIANGHONG HAO, JUAN CAI
  • Patent number: 7817819
    Abstract: A catalyst sample may contain both small and large metal particle distributions simultaneously. Characterizing the properties of the metal particles contained in each distribution is important to help describe catalytic performance and optimize catalysts. Monte Carlo simulations and dispersion measurements are employed to determine the relationship between dispersion parameters of each metal particle distribution. Various properties, such as the atom fraction and the surface atom fraction of each distribution can be determined.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: October 19, 2010
    Assignee: Nanostellar, Inc.
    Inventors: Mats I. Larsson, Juan Cai
  • Publication number: 20100048384
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes supported precious group metal catalysts that are coated onto different layers of the substrate for the emission control catalyst. Zeolites of one or more types are added to the emission control catalyst as a hydrocarbon absorbing component to boost the low temperature performance of the emission control catalyst. Y zeolite is used by itself or mixed with other zeolites to enhance hydrocarbon storage at low temperatures.
    Type: Application
    Filed: November 9, 2009
    Publication date: February 25, 2010
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Juan Cai, Chaitanya Sampara
  • Patent number: 7561756
    Abstract: Three-dimensional (3D) shapes of particles are characterized from a two-dimensional (2D) image of the particles that is obtained using TEM. The 3D shape characterization method includes the steps of obtaining a 2D image of a batch of nanoparticles, determining 2D shapes of the nanoparticles from the 2D image, and deriving six distributions, each of which corresponds to a 2D shape and a 3D shape associated with the 2D shape. The first size distribution is derived from the nanoparticles having the 2D triangle shape. The second and third size distributions are derived from the nanoparticles having the 2D tetragon shape. The fourth, fifth and sixth size distributions are derived from the nanoparticles having the 2D round shape. Based on these six size distributions, three size distributions, each of which corresponds to one of three 3D shape classes, are estimated.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: July 14, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Mats I. Larsson, Cetin Kilic, Ariana Zimbouski, Juan Cai
  • Patent number: 7527771
    Abstract: A sample preparation method for characterization of nanoparticles embedded in the supports of heterogeneous catalysts, with improved particle dispersion, is introduced. The supported catalyst is first ground or milled into fine powder. Then, the powder is mixed into an organic solvent, and an etchant is added to the solvent to digest the supports and release metallic nanoparticles. The resulting solution is then placed in an ultrasonic bath where ultrasonic waves are generated and applied to the solution. The ultrasonic waves suppress agglomeration of the particles and also break up those particle clusters resulting from agglomeration during the prior steps. Subsequently, a sample is extracted from the solution and prepared for analysis.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: May 5, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Juan Cai, Mats Larsson, Jifei Jia, Xianghong Hao, Jian Wang
  • Patent number: 7521392
    Abstract: The catalytic efficiency of supported catalysts containing metal nanoparticles is strongly related to the chemical softness at the surfaces of such nanoparticles. Supported catalysts containing platinum nanoparticles having average surface softness values (expressed in scaled units ranging from 0 to 1) between 0.07198 and 0.09247 exhibit high catalytic efficiency. The catalytic efficiency of such platinum nanoparticles for CO oxidation, expressed as the turn-over frequency (TOF), was observed to be on or above 0.03062 s?1. The supported catalysts containing platinum nanoparticles with tighter average surface softness ranges exhibit even higher catalytic efficiencies. The TOF for CO oxidation of platinum nanoparticles having average surface softness values between 0.08031 and 0.08679 was observed to be on or above 0.06554 s?1.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: April 21, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Cetin Kilic, Jangsuk Hyun, Ligen Wang, Mats Larsson, Juan Cai, Jifei Jia, Xianghong Hao, Jonathan W. Woo
  • Patent number: 7482163
    Abstract: The catalytic efficiency of supported catalysts containing metal nanoparticles is strongly related to the chemical softness at the surfaces of such nanoparticles. The chemical softness of a nanoparticle is obtained using results from Density Functional Theory modeling, an extended version of Embedded Atom Method modeling, and continuum modeling based on size and shape of the nanoparticle. A metal nanoparticle of a certain size and shape is first modeled using the extended EAM and EAM parameters that have been validated with results from DFT modeling, to obtain atomic energy densities at each atom location. The chemical softness value at each atom location is then calculated from the atomic energy densities and various parameters that are derived based on results from DFT modeling. The surface chemical softness value is derived from the local chemical softness values based on the geometry and atomistic structure of the metal nanoparticle.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: January 27, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Cetin Kilic, Jangsuk Hyun, Ligen Wang, Mats Larsson, Juan Cai, Jifei Jia, Xianghong Hao, Jonathan W. Woo
  • Publication number: 20080251813
    Abstract: The present invention provides semiconductor structures and a method of fabricating such structures for application of MOSFET devices. The semiconductor structures are fabricated in such a way so that the layer structure in the regions of the wafer where n-MOSFETs are fabricated is different from the layer structure in regions of the wafers where p-MOSFETs are fabricated. The structures are fabricated by first forming a damaged region with a surface of a Si-containing substrate by ion implanting of a light atom such as He. A strained SiGe alloy is then formed on the Si-containing substrate containing the damaged region. An annealing step is then employed to cause substantial relaxation of the strained SiGe alloy via a defect initiated strain relaxation. Next, a strained semiconductor cap such as strained Si is formed on the relaxed SiGe alloy.
    Type: Application
    Filed: June 17, 2008
    Publication date: October 16, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diane C. Boyd, Juan Cai, Kevin K. Chan, Patricia M. Mooney, Kern Rim
  • Patent number: 7430322
    Abstract: The size distributions corresponding to the three-dimensional (3D) shapes of particles are estimated from a 3D-to-2D projection matrix and a two-dimensional (2D) image of the particles that is obtained using TEM. Two different methods to generate a 3D-to-2D projection matrix are described. The first method determines the matrix coefficients assuming equal probability for all high-symmetry projections. The second method employs a large set of 3D-to-2D projection matrices with randomly generated coefficients satisfying the high-symmetry projection constraint. The second method is a general method to determine 3D-to-2D projection matrices based on the assumption that certain high-symmetry projections are present for the system under investigation.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: September 30, 2008
    Assignee: Nanostellar, Inc.
    Inventors: Mats I. Larsson, Cetin Kilic, Ariana Zimbouski, Juan Cai
  • Patent number: 7396747
    Abstract: The present invention provides semiconductor structures and a method of fabricating such structures for application of MOSFET devices. The semiconductor structures are fabricated in such a way so that the layer structure in the regions of the wafer where n-MOSFETs are fabricated is different from the layer structure in regions of the wafers where p-MOSFETs are fabricated. The structures are fabricated by first forming a damaged region with a surface of a Si-containing substrate by ion implanting of a light atom such as He. A strained SiGe alloy is then formed on the Si-containing substrate containing the damaged region. An annealing step is then employed to cause substantial relaxation of the strained SiGe alloy via a defect initiated strain relaxation. Next, a strained semiconductor cap such as strained Si is formed on the relaxed SiGe alloy.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Diane C. Boyd, Juan Cai, Kevin K. Chan, Patricia M. Mooney, Kern Rim
  • Publication number: 20070278517
    Abstract: The present invention provides semiconductor structures and a method of fabricating such structures for application of MOSFET devices. The semiconductor structures are fabricated in such a way so that the layer structure in the regions of the wafer where n-MOSFETs are fabricated is different from the layer structure in regions of the wafers where p-MOSFETs are fabricated. The structures are fabricated by first forming a damaged region with a surface of a Si-containing substrate by ion implanting of a light atom such as He. A strained SiGe alloy is then formed on the Si-containing substrate containing the damaged region. An annealing step is then employed to cause substantial relaxation of the strained SiGe alloy via a defect initiated strain relaxation. Next, a strained semiconductor cap such as strained Si is formed on the relaxed SiGe alloy.
    Type: Application
    Filed: August 16, 2007
    Publication date: December 6, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diane Boyd, Juan Cai, Kevin Chan, Patricia Mooney, Kern Rim
  • Patent number: 7273800
    Abstract: The present invention provides semiconductor structures and a method of fabricating such structures for application of MOSFET devices. The semiconductor structures are fabricated in such a way so that the layer structure in the regions of the wafer where n-MOSFETs are fabricated is different from the layer structure in regions of the wafers where p-MOSFETs are fabricated. The structures are fabricated by first forming a damaged region with a surface of a Si-containing substrate by ion implanting of a light atom such as He. A strained SiGe alloy is then formed on the Si-containing substrate containing the damaged region. An annealing step is then employed to cause substantial relaxation of the strained SiGe alloy via a defect initiated strain relaxation. Next, a strained semiconductor cap such as strained Si is formed on the relaxed SiGe alloy.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: September 25, 2007
    Assignee: International Business Machines Corporation
    Inventors: Diane C. Boyd, Juan Cai, Kevin K. Chan, Patricia M. Mooney, Kern Rim
  • Patent number: D955549
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: June 21, 2022
    Assignee: SHENZHEN AIPU WEIER ELECTRONIC CO., LTD.
    Inventor: Juan Cai
  • Patent number: D976731
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 31, 2023
    Assignee: Shenzhen Dongzhiwei Technology Co., Ltd
    Inventor: Juan Cai
  • Patent number: D977080
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 31, 2023
    Assignee: Shenzhen Dongzhiwei Technology Co., Ltd.
    Inventor: Juan Cai