Patents by Inventor Juan Carlos Rocha-Alvarez

Juan Carlos Rocha-Alvarez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9816187
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: November 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20170309528
    Abstract: The implementations described herein generally relate to the dynamic, real-time control of the process spacing between a substrate support and a gas distribution medium during a deposition process. Multiple dimensional degrees of freedom are utilized to change the angle and spacing of the substrate plane with respect to the gas distributing medium at any time during the deposition process. As such, the substrate and/or substrate support may be leveled, tilted, swiveled, wobbled, and/or moved during the deposition process to achieve improved film uniformity. Furthermore, the independent tuning of each layer may be had due to continuous variations in the leveling of the substrate plane with respect to the showerhead to average effective deposition on the substrate, thus improving overall stack deposition performance.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 26, 2017
    Inventors: Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ, Karthik JANAKIRAMAN, Tuan Anh NGUYEN
  • Publication number: 20170306494
    Abstract: A method and apparatus for a heated substrate support pedestal is provided. In one embodiment, the heated substrate support pedestal includes a body comprising a ceramic material, a plurality of heating elements encapsulated within the body A stem is coupled to a bottom surface of the body. A plurality of heater elements, a top electrode and a shield electrode are disposed within the body. The top electrode is disposed adjacent a top surface of the body, while the shield electrode is disposed adjacent the bottom surface of the body. A conductive rod is disposed through the stem and is coupled to the top electrode.
    Type: Application
    Filed: January 26, 2017
    Publication date: October 26, 2017
    Inventors: Xing LIN, Vijay D. PARKHE, Jianhua ZHOU, Edward P. HAMMOND, IV, Jaeyong CHO, Zheng John YE, Zonghui SU, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20170275763
    Abstract: Implementations described herein generally relate to materials and coatings, and more specifically to materials and coatings for aluminum and aluminum-containing chamber components. In one implementation, a process is provided. The process comprises exposing an aluminum-containing component to a moisture thermal treatment process and exposing the aluminum-containing component to a thermal treatment process. The moisture thermal treatment process comprises exposing the aluminum-containing component to an environment having a moisture content from about 30% to about 100% at a first temperature from about 30 to about 100 degrees Celsius. The thermal treatment process comprises heating the aluminum-containing component to a second temperature from about 200 degrees Celsius to about 550 degrees Celsius to form an alumina layer on the at least one surface of the aluminum-containing component.
    Type: Application
    Filed: February 20, 2017
    Publication date: September 28, 2017
    Inventors: Ren-Guan DUAN, Jianhua ZHOU, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20170278682
    Abstract: Embodiments of the present disclosure generally relate to a substrate support assembly in a semiconductor processing chamber. The semiconductor processing chamber may be a PECVD chamber including a substrate support assembly having a substrate support and a stem coupled to the substrate support. An RF electrode is embedded in the substrate support and a rod is coupled to the RF electrode. The rod is made of titanium (Ti) or of nickel (Ni) coated with gold (Au), silver (Ag), aluminum (Al), or copper (Cu). The rod made of Ti or of Ni coated with Au, Ag, Al or Cu has a reduced electrical resistivity and increased skin depth, which minimizes heat generation as RF current travels through the rod.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 28, 2017
    Inventors: Xing LIN, Jianhua ZHOU, Ningli LIU, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20170263484
    Abstract: A method and apparatus for a heated pedestal is provided. In one embodiment, the heated pedestal includes a body comprising a ceramic material, a plurality of heating elements encapsulated within the body, and one or more grooves formed in a surface of the body adjacent each of the plurality of heating elements, at least one side of the grooves being bounded by a ceramic plate.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 14, 2017
    Inventors: Xing LIN, Bozhi YANG, Jianhua ZHOU, Dale R. DUBOIS, Juan Carlos ROCHA-ALVAREZ, Ramprakash SANKARAKRISHNAN
  • Patent number: 9725806
    Abstract: A method and apparatus for a heated pedestal is provided. In one embodiment, the heated pedestal includes a body comprising a ceramic material, a plurality of heating elements encapsulated within the body, and one or more grooves formed in a surface of the body adjacent each of the plurality of heating elements, at least one side of the grooves being bounded by a ceramic plate.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 8, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xing Lin, Bozhi Yang, Jianhua Zhou, Dale R. Dubois, Juan Carlos Rocha-Alvarez, Ramprakash Sankarakrishnan
  • Publication number: 20170194174
    Abstract: A method and apparatus for processing substrates includes a chamber defining a plurality of processing regions, a heater disposed centrally within each pair of processing regions, each heater having a first major surface and a second major surface opposing the first major surface, each of the first major surfaces defining a first substrate receiving surface and each of the second major surfaces defining a second substrate receiving surface, and a showerhead positioned in an opposing relationship to each of the first substrate receiving surfaces and each of the second substrate receiving surfaces of the heaters.
    Type: Application
    Filed: December 22, 2016
    Publication date: July 6, 2017
    Inventors: Karthik JANAKIRAMAN, Juan Carlos ROCHA-ALVAREZ, Hari K. PONNEKANTI, Mukund SRINIVASAN
  • Publication number: 20170178758
    Abstract: The present disclosure generally relates to a radiation shield for a process chamber which improves substrate temperature uniformity. The radiation shield may be disposed between a slit valve door of the process chamber and a substrate support disposed within the process chamber. In some embodiments, the radiation shield may be disposed under a heater of the process chamber. Furthermore, the radiation shield may block radiation and/or heat supplied from the process chamber, and in some embodiments, the radiation shield may absorb and/or reflect radiation, thus providing improved temperature uniformity as well as improving a planar profile of the substrate.
    Type: Application
    Filed: December 5, 2016
    Publication date: June 22, 2017
    Inventors: Sungwon HA, Paul CONNORS, Jianhua ZHOU, Juan Carlos ROCHA-ALVAREZ, Kwangduk Douglas LEE, Ziqing DUAN, Nicolas J. BRIGHT, Feng BI
  • Publication number: 20170162417
    Abstract: Techniques are disclosed for methods and apparatuses of an electrostatic chuck suitable for operating at high operating temperatures. In one example, a substrate support assembly is provided. The substrate support assembly includes a substantially disk-shaped ceramic body having an upper surface, a cylindrical sidewall, and a lower surface. The upper surface is configured to support a substrate thereon for processing the substrate in a vacuum processing chamber. The cylindrical sidewall defines an outer diameter of the ceramic body. The lower surface is disposed opposite the upper surface. An electrode is disposed in the ceramic body. A circuit is electrically connected to the electrode. The circuit includes a DC chucking circuit, a first RF drive circuit, and a second RF dive circuit. The DC chucking circuit, the first RF drive circuit and the second RF drive circuit are electrically coupled with the electrode.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 8, 2017
    Inventors: Zheng John YE, Hiroji HANAWA, Juan Carlos ROCHA-ALVAREZ, Pramit MANNA, Michael Wenyoung TSIANG, Allen KO, Wenjiao WANG, Yongjing LIN, Prashant Kumar KULSHRESHTHA, Xinhai HAN, Bok Hoen KIM, Kwangduk Douglas LEE, Karthik Thimmavajjula NARASIMHA, Ziqing DUAN, Deenesh PADHI
  • Publication number: 20170162385
    Abstract: A method and apparatus for processing a substrate are provided. The apparatus includes a pedestal and rotation member, both of which are moveably disposed within a processing chamber. The rotation member is adapted to rotate a substrate disposed in the chamber. The substrate may be supported by an edge ring during processing. The edge ring may selectively engage either the pedestal or the rotation member. In one embodiment, the edge ring engages the pedestal during a deposition process and the edge ring engages the rotation member during rotation of the substrate. The rotation of the substrate during processing may be discrete or continuous.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA-ALVAREZ, Ramprakash SANKARAKRISHNAN, Robert KIM, Dale R. DU BOIS, Kirby H. FLOYD, Amit Kumar BANSAL, Tuan Anh NGUYEN
  • Publication number: 20170148654
    Abstract: Implementations of the present disclosure generally relate to an improved factory interface that is coupled to an on-board metrology housing configured for measuring film properties of a substrate. In one implementation, an apparatus comprises a factory interface, and a metrology housing removably coupled to the factory interface through a load port, the metrology housing comprises an on-board metrology assembly for measuring properties of a substrate to be transferred into the metrology housing.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 25, 2017
    Inventors: Khokan C. PAUL, Jay D. PINSON, II, Juan Carlos ROCHA-ALVAREZ, Hari K. PONNEKANTI, Rupankar CHOUDHURY, Shekhar ATHANI, Sandeep KUMPALA, Hanish Kumar PANAVALAPPIL KUMARANKUTTY
  • Publication number: 20170121813
    Abstract: The present invention is a method and apparatus for cleaning a chemical vapor deposition (CVD) chamber using cleaning gas energized to a plasma in a gas mixing volume separated by an electrode from a reaction volume of the chamber. In one embodiment, a source of RF power is coupled to a lid of the chamber, while a switch is used to couple a showerhead to ground terminals or the source of RF power.
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Maosheng ZHAO, Juan Carlos ROCHA-ALVAREZ, Inna SHMURUN, Soovo SEN, Mao D. LIM, Shankar VENKATARAMAN, Ju-Hyung LEE
  • Publication number: 20170101712
    Abstract: The present disclosure relates to a semiconductor processing apparatus. The processing chamber includes a chamber body and lid defining an interior volume, a substrate support disposed in the interior volume and a showerhead assembly disposed between the lid and the substrate support. The showerhead assembly includes a faceplate configured to deliver a process gas to a processing region defined between the showerhead assembly and the substrate support and a underplate positioned above the faceplate, defining a first plenum between the lid and the underplate, the having multiple zones, wherein each zone has a plurality of openings that are configured to pass an amount of inert gas from the first plenum into a second plenum defined between the faceplate and the underplate, in fluid communication with the plurality of openings of each zone such that the inert gas mixes with the process gas before exiting the showerhead assembly.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 13, 2017
    Inventors: Amit Kumar BANSAL, Juan Carlos ROCHA-ALVAREZ, Sanjeev BALUJA, Sam H. KIM, Tuan Anh NGUYEN
  • Publication number: 20170092511
    Abstract: Implementations disclosed herein describe a bevel etch apparatus within a loadlock bevel etch chamber and methods of using the same. The bevel etch apparatus has a mask assembly within the loadlock bevel etch chamber. During an etch process, the mask assembly delivers a gas flow to control bevel etch without the use of a shadow frame. As such, the edge exclusion at the bevel edge can be reduced, thus increasing product yield.
    Type: Application
    Filed: February 2, 2016
    Publication date: March 30, 2017
    Inventors: Saptarshi BASU, Jeongmin LEE, Paul CONNORS, Dale R. DU BOIS, Prashant Kumar KULSHRESHTHA, Karthik Thimmavajjula NARASIMHA, Brett BERENS, Kalyanjit GHOSH, Jianhua ZHOU, Ganesh BALASUBRAMANIAN, Kwangduk Douglas LEE, Juan Carlos ROCHA-ALVAREZ, Hiroyuki OGISO, Liliya KRIVULINA, Rick GILBERT, Mohsin WAQAR, Venkatanarayana SHANKARAMURTHY, Hari K. PONNEKANTI
  • Patent number: 9593419
    Abstract: A method and apparatus for processing a substrate are provided. The apparatus includes a pedestal and rotation member, both of which are moveably disposed within a processing chamber. The rotation member is adapted to rotate a substrate disposed in the chamber. The substrate may be supported by an edge ring during processing. The edge ring may selectively engage either the pedestal or the rotation member. In one embodiment, the edge ring engages the pedestal during a deposition process and the edge ring engages the rotation member during rotation of the substrate. The rotation of the substrate during processing may be discrete or continuous.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: March 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Ramprakash Sankarakrishnan, Robert Kim, Dale R. Du Bois, Kirby Hane Floyd, Amit Kumar Bansal, Tuan Anh Nguyen
  • Publication number: 20170069464
    Abstract: Implementations of the present disclosure generally relate to methods and apparatus for generating and controlling plasma, for example RF filters, used with plasma chambers. In one implementation, a plasma processing apparatus is provided. The plasma processing apparatus comprises a chamber body, a powered gas distribution manifold enclosing a processing volume and a radio frequency (RF) filter. A pedestal having a substrate-supporting surface is disposed in the processing volume. A heating assembly comprising one or more heating elements is disposed within the pedestal for controlling a temperature profile of the substrate-supporting surface. A tuning assembly comprising a tuning electrode is disposed within the pedestal between the one or more heating elements and the substrate-supporting surface. The RF filter comprises an air core inductor, wherein at least one of the heating elements, the tuning electrode, and the gas distribution manifold is electrically coupled to the RF filter.
    Type: Application
    Filed: July 19, 2016
    Publication date: March 9, 2017
    Inventors: Zheng John YE, Abdul Aziz KHAJA, Amit Kumar BANSAL, Kwangduk Douglas LEE, Xing LIN, Jianhua ZHOU, Addepalli Sai SUSMITA, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20170040198
    Abstract: Embodiments of the present disclosure provide an improved electrostatic chuck for supporting a substrate. The electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, a plurality of tabs projecting from the substrate supporting surface of the chuck body, wherein the tabs are disposed around the circumference of the chuck body, an electrode embedded within the chuck body, the electrode extending radially from a center of the chuck body to a region beyond the plurality of tabs, and an RF power source coupled to the electrode through a first electrical connection.
    Type: Application
    Filed: July 18, 2016
    Publication date: February 9, 2017
    Inventors: Xing LIN, Jianhua ZHOU, Zheng John YE, Jian CHEN, Juan Carlos ROCHA-ALVAREZ
  • Patent number: 9556507
    Abstract: Embodiments of the present invention generally relate to heated substrate supports having a protective coating thereon. The protective coating is formed from yttrium oxide at a molar concentration ranging from about 50 mole percent to about 75 mole percent; zirconium oxide at a molar concentration ranging from about 10 mole percent to about 30 mole percent; and at least one other component, selected from the group consisting of aluminum oxide, hafnium oxide, scandium oxide, neodymium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, cerium oxide, and combinations thereof, at a molar concentration ranging from about 10 mole percent to about 30 mole percent. The alloying of yttrium oxide with a compatible oxide improves wear resistance, flexural strength, and fracture toughness of the protective coating, relative to pure yttrium oxide.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 31, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ren-Guan Duan, Juan Carlos Rocha-Alvarez, Jianhua Zhou
  • Publication number: 20170016118
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 19, 2017
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN