Patents by Inventor Juan Enrique Portillo Bilbao

Juan Enrique Portillo Bilbao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170284675
    Abstract: Injector assembly and ducting arrangement including such assemblies for a combustor system in a gas turbine engine are provided. A reactant-guiding structure (42) may be configured to define a curvilinear flow path (47) to route a flow of reactants from a first flow direction (50) to a second flow direction (52) toward a cross-flow of combustion gases (60). A cross-flow guiding structure (54) may further define a flow path (58) to route a portion of the cross-flow of combustion gases toward an outlet side of the cross-flow guiding structure. Disclosed injector assemblies can be configured to reduce pressure loss while providing an effective level of mixing of the injected reactants with the passing cross-flow. Respective injector assemblies or the entire ducting arrangement may be formed as a unitized structure, such as a single piece using a rapid manufacturing technology, such as 3D Printing/Additive Manufacturing (AM) technology.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventors: Andrew J. North, Juan Enrique Portillo Bilbao, Walter Ray Laster, Joseph Meadows
  • Publication number: 20170284676
    Abstract: Method and computer-readable model for additively manufacturing an injector assembly or a ducting arrangement including such assembles, as may be used in a combustion system of a gas turbine engine. The injector assembly may include a reactant-guiding structure (42) that may be configured to define a curvilinear flow path (47) to route a flow of reactants from a first flow direction (50) to a second flow direction (52) toward a cross-flow of combustion gases (60). A cross-flow guiding structure (54) may further define a flow path (58) to route a portion of the cross-flow of combustion gases toward an outlet side of the cross-flow guiding structure. Disclosed injector assemblies can be configured to reduce pressure loss while providing an effective level of mixing of the injected reactants with the passing cross-flow.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventors: Andrew J. North, Juan Enrique Portillo Bilbao, Walter Ray Laster, Joseph Meadows
  • Publication number: 20170261964
    Abstract: Method and computer-readable model for additively manufacturing a ducting arrangement in a combustion system of a gas turbine engine are provided. The ducting arrangement may be formed by duct segments (32) circumferentially adjoined with one another to form a flow duct structure (e.g., a flow-accelerating structure (34)) and a pre-mixing structure (35). The flow duct structure may be fluidly coupled to pass a cross-flow of combustion gases. The pre-mixing structure (35) may include an array of pre-mixing tubes (48) fluidly coupled to receive air and fuel conveyed by a manifold (42) to inject a mixture of air and fuel into the cross-flow of combustion gases that passes through the flow duct structure. The duct segments or the entire ducting arrangement may be formed as a unitized structure, such as a single piece using a rapid manufacturing technology, such as 3D Printing/Additive Manufacturing (AM) technology.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 14, 2017
    Inventors: Joseph Meadows, Juan Enrique Portillo Bilbao, Walter Ray Laster, Andrew J. North
  • Publication number: 20170260866
    Abstract: A ducting arrangement (30) in a combustion system of a gas turbine engine is provided. The ducting arrangement may be formed by duct segments (32) circumferentially adjoined with one another to form a flow duct structure (e.g., a flow-accelerating structure (34)) and a pre-mixing structure (35). The flow duct structure is fluidly coupled to pass a cross-flow of combustion gases. The pre-mixing structure (35) may include an array of pre-mixing tubes (48) fluidly coupled to receive air and fuel conveyed by a manifold (42) to inject a mixture of air and fuel into the cross-flow of combustion gases that passes through the flow duct structure. The duct segments or the entire ducting arrangement may be formed as a unitized structure, such as a single piece using a rapid manufacturing technology, such as 3D Printing/Additive Manufacturing (AM) technology.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 14, 2017
    Inventors: Joseph Meadows, Juan Enrique Portillo Bilbao, Walter Ray Laster, Andrew J. North
  • Publication number: 20170219212
    Abstract: A cooling system (10) for a fuel system in a turbine engine (14) that is usable to cool a fuel nozzle (16) is disclosed. The cooling system (10) may include one or more cooling system housings (18) positioned around the fuel nozzle (16), such that the cooling system housing (18) forms a cooling chamber (20) defined at least partially by an inner surface (22) of the cooling system housing (18) and an outer surface (24) of the fuel nozzle (16). The fuel nozzle (16) may extend into a combustor chamber (26) formed at least in part by a combustor housing (32). The fuel nozzle (16) may include one or more fuel exhaust orifices (28) with an opening (30) in an outer surface (24) of the fuel nozzle (16) and configured to exhaust fluids unrestricted by the housing (18) forming the cooling system cooling chamber (20). The cooling system (10) may provide cooling fluids to cool the fuel nozzle (16) within the cooling system cooling chamber (20) regardless of whether the fuel nozzle (16) is in use.
    Type: Application
    Filed: August 26, 2014
    Publication date: August 3, 2017
    Inventors: Walter Ray Laster, Scott M. Martin, Juan Enrique Portillo Bilbao, Jacob William Hardes, Timothy A. Fox
  • Publication number: 20170114717
    Abstract: A method of operating an axial stage combustion system in a gas turbine engine (12) including an EGR system (14) that extracts a portion of exhaust gas produced by the gas turbine engine (12) to a second axial stage of a combustor (18). The extracted exhaust gas is provided at an elevated temperature to a group of injector nozzles (50) at the second axial stage (34) of the combustor (18). A secondary fuel supply line (34) extends to an inlet on each of the injector nozzles (50), and the fuel is mixed with the exhaust gas within the injector nozzles (50) and the mixture of fuel and exhaust gas is injected into the second axial stage (34) of the combustor (18).
    Type: Application
    Filed: June 26, 2014
    Publication date: April 27, 2017
    Inventors: Scott M. Martin, Walter Ray Laster, Juan Enrique Portillo Bilbao
  • Patent number: 9400108
    Abstract: An acoustically dampened gas turbine engine having a gas turbine engine combustor with an acoustic damping resonator system is disclosed. The acoustic damping resonator system may be formed from one or more resonators positioned within the gas turbine engine combustor at an outer housing forming a combustor basket and extending circumferentially within the combustor. The resonator may be positioned in a head region of the combustor basket. In one embodiment, the resonator may be positioned in close proximity to an intersection between the outer housing and an upstream wall defining at least a portion of the combustor. The acoustic damping resonator system may mitigate longitudinal mode dynamics thereby increasing an engine operating envelope and decreasing emissions.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: July 26, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Juan Enrique Portillo Bilbao, Rajesh Rajaram, Danning You, Kevin M. Spence
  • Patent number: 9366438
    Abstract: A combustor assembly in a gas turbine engine includes a liner defining a combustion zone, at least one fuel injector for providing fuel, and a flow sleeve. An inner surface of the flow sleeve defines an outer boundary for an air flow passageway. Upon the air reaching a head end of the combustor assembly at an end of the air flow passageway the air turns 180 degrees to flow into the combustion zone where it is burned with the fuel. The combustor assembly further includes an inlet assembly positioned radially between the liner and the flow sleeve. The inlet assembly defines an inlet to the air flow passageway and includes a plurality of overlapping conduits that are arranged such that the air entering the air flow passageway passes through radial spaces between adjacent conduits.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: June 14, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Rajesh Rajaram, Juan Enrique Portillo Bilbao, Danning You
  • Publication number: 20150276226
    Abstract: A secondary fuel stage (14) of a combustor of a gas turbine engine. The combustor has a main combustion zone (43) upstream of the secondary fuel stage to ignite working gas The secondary fuel stage includes a nozzle (18) with dual outlets (20, 22) oriented with a circumferential component to inject an air-fuel mixture (24) into the combustor. The nozzle is effective to entrain the air-fuel mixture with the working gas (44) such that a peak temperature (46) of the working gas at a location downstream of the secondary fuel stage is less than a peak temperature (50) of working gas if the air-fuel mixture were injected into the combustor with a single outlet nozzle (118).
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Scott M. Martin, Juan Enrique Portillo Bilbao, Jacob Hardes, Timothy A. Fox
  • Publication number: 20150167980
    Abstract: A gas turbine engine (202) including a secondary fuel stage (218) which also functions as a dual frequency resonator. The engine includes a combustor (210) and a casing (205) enclosing the combustor to define a volume (214). The secondary fuel stage includes a nozzle (217) sized to be effective as a transverse resonator at a high frequency. The nozzle and the volume (214) of the casing are sized to be effective as a longitudinal resonator at an intermediate frequency.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Inventors: Jared M. Pent, Juan Enrique Portillo Bilbao, Perry L. Johnson, Esam Abu-Irshaid, Walter R. Laster, Scott M. Martin, Rafik N. Rofail
  • Publication number: 20140338332
    Abstract: An acoustically dampened gas turbine engine having a gas turbine engine combustor with an acoustic damping resonator system is disclosed. The acoustic damping resonator system may be formed from one or more resonators positioned within the gas turbine engine combustor at an outer housing forming a combustor basket and extending circumferentially within the combustor. The resonator may be positioned in a head region of the combustor basket. In one embodiment, the resonator may be positioned in close proximity to an intersection between the outer housing and an upstream wall defining at least a portion of the combustor. The acoustic damping resonator system may mitigate longitudinal mode dynamics thereby increasing an engine operating envelope and decreasing emissions.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Inventors: Juan Enrique Portillo Bilbao, Rajesh Rajaram, Danning You, Kevin J. Spence
  • Publication number: 20140223914
    Abstract: A combustor assembly in a gas turbine engine includes a liner defining a combustion zone, at least one fuel injector for providing fuel, and a flow sleeve. An inner surface of the flow sleeve defines an outer boundary for an air flow passageway. Upon the air reaching a head end of the combustor assembly at an end of the air flow passageway the air turns 180 degrees to flow into the combustion zone where it is burned with the fuel. The combustor assembly further includes an inlet assembly positioned radially between the liner and the flow sleeve. The inlet assembly defines an inlet to the air flow passageway and includes a plurality of overlapping conduits that are arranged such that the air entering the air flow passageway passes through radial spaces between adjacent conduits.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Inventors: Rajesh Rajaram, Juan Enrique Portillo Bilbao, Danning You