Patents by Inventor Juan F. Vera

Juan F. Vera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931408
    Abstract: Embodiments of the disclosure concern methods of identifying whether or not antigens from a particular pathogen are immunogenic, including the order of their immunogenicity. Other embodiments concern correlations between attributes of T cells and their clinical efficacy, such as mathematical representations thereof.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: March 19, 2024
    Assignee: Baylor College of Medicine
    Inventors: Ann Marie Leen, Pailbel Aguayo-Hiraldo, Ifigeneia Tzannou, Juan F. Vera Valdes
  • Publication number: 20240084255
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Juan F. VERA, Cliona M. ROONEY, Ann M. LEEN, John R. WILSON
  • Publication number: 20240002797
    Abstract: Production and use of novel therapeutic cells, called T-Vehicles, in the allogeneic Adoptive Cell Therapy setting allows a wide range of therapeutic benefits to accrue with minimal or no risk of GVHD. T-Vehicles are created from donor T cells that are altered to contain therapeutic attributes that do not include their native antigen receptors and can deliver therapeutic benefits irrelevant of their native antigen specificity. T-Vehicles can possess highly restricted native antigen specificity that renders them unable to recognize antigens present on normal cells and incapable of initiating GVHD, making them ideal transport vehicles to deliver various therapeutic attributes in vivo. In essence, production and use of T-Vehicles is a paradigm shift that opens the door to therapeutic application of T cells in ways not previously contemplated, independent of whether or not there is an HLA match between the donor and the recipient.
    Type: Application
    Filed: May 17, 2023
    Publication date: January 4, 2024
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Publication number: 20230383250
    Abstract: Production and use of novel therapeutic cells, called T-Vehicles, in the allogeneic Adoptive Cell Therapy setting allows a wide range of therapeutic benefits to accrue with minimal or no risk of GVHD. T-Vehicles are created from donor T cells that are altered to contain therapeutic attributes that do not include their native antigen receptors and can deliver therapeutic benefits irrelevant of their native antigen specificity. T-Vehicles can possess highly restricted native antigen specificity that renders them unable to recognize antigens present on normal cells and incapable of initiating GVHD, making them ideal transport vehicles to deliver various therapeutic attributes in vivo. In essence, production and use of T-Vehicles is a paradigm shift that opens the door to therapeutic application of T cells in ways not previously contemplated, independent of whether or not there is an HLA match between the donor and the recipient.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 30, 2023
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Patent number: 11821002
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 21, 2023
    Assignees: Baylor College of Medicine, Wilson Wolf Manufacturing
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Publication number: 20230357721
    Abstract: The present invention encompasses methods and compositions for the generation and use of cytotoxic T lymphocytes that target multiple viruses or that are specific for multiple tumor antigens. In specific embodiments, the generation methods employ use of certain cytokines to promote proliferation and reduce cell death in an activated T cell population and/or that employ a particular bioreactor having a gas permeable membrane.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 9, 2023
    Inventors: Ann Marie Leen, Ulrike Gerdemann, Cliona M. Rooney, Juan F. Vera Valdes, John R. Wilson
  • Patent number: 11717538
    Abstract: The present invention concerns compositions and methods related to approaches to render ineffective Th1 T cells resistant to the inhibitory cytokine milieu present in a cancer microenvironment. In particular embodiments, tumor-specific T cells are modified to employ a chimeric receptor that binds inhibitory/suppressive cytokines and converts their intracellular consequences to a Th1 immunostimulaotyr/activating signal. In specific embodiments, the T cells employ a chimeric antigen receptor having exodomains for IL10, IL13 and/or IL4 fused with the signal transducing endodomains for IL2 and/or IL7.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 8, 2023
    Assignee: Baylor College of Medicine
    Inventors: Ann Marie Leen, Juan F. Vera
  • Publication number: 20230114971
    Abstract: The present invention encompasses methods and compositions for the generation and use of cytotoxic T lymphocytes that target multiple viruses or that are specific for multiple tumor antigens. In specific embodiments, the generation methods employ use of certain cytokines to promote proliferation and reduce cell death in an activated T cell population and/or that employ a particular bioreactor having a gas permeable membrane.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 13, 2023
    Inventors: Ann Marie Leen, Ulrike Gerdemann, Cliona M. Rooney, Juan F. Vera Valdes, John R. Wilson
  • Publication number: 20230028788
    Abstract: The present disclosure provides, inter alia, compositions and methods for harnessing the immune system (e.g., T cells) as a detection tool to diagnose and predict cancer patient treatment outcomes and for monitoring the persistence of functional, non-genetically modified, T cell therapies in vivo after administration to a subject.
    Type: Application
    Filed: December 18, 2020
    Publication date: January 26, 2023
    Inventors: Wingchi Leung, Premal Lulla, Spyridoula Vasileiou, Ann Marie Leen, Juan F. Vera Valdes
  • Publication number: 20220282218
    Abstract: The present invention encompasses methods and compositions for the generation and use of cytotoxic T lymphocytes that target multiple viruses or that are specific for multiple tumor antigens. In specific embodiments, the generation methods employ use of certain cytokines to promote proliferation and reduce cell death in an activated T cell population and/or that employ a particular bioreactor having a gas permeable membrane.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Inventors: Ann Marie Leen, Ulrike Gerdemann, Cliona M. Rooney, Juan F. Vera Valdes, John R. Wilson
  • Publication number: 20220186185
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Patent number: 11268066
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: March 8, 2022
    Assignees: Wilson Wolf Manufacturing, Baylor College of Medicine
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Publication number: 20220001005
    Abstract: Embodiments of the disclosure concern methods of identifying whether or not antigens from a particular pathogen are immunogenic, including the order of their immunogenicity. Other embodiments concern correlations between attributes of T cells and their clinical efficacy, such as mathematical representations thereof.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Ann Marie Leen, Pailbel Aguayo-Hiraldo, Ifigeneia Tzannou, Juan F. Vera Valdes
  • Publication number: 20200095550
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Patent number: 10548921
    Abstract: Disclosed are compositions and methods related to rendering ineffective Th1 T cells resistant to the inhibitory cytokine milieu present in a cancer microenvironment. Tumor-specific T cells are modified to employ a chimeric receptor that binds inhibitory/suppressive cytokines and converts their intracellular consequences to a Th1 immunostimulatory/activating signal. The T cells employ a chimeric antigen receptor having exodomains for IL10, IL13 and/or IL4 fused with the signal transducing endodomains for IL2 and/or IL7.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 4, 2020
    Assignee: BAYLOR COLLEGE OF MEDICINE
    Inventors: Ann Marie Leen, Juan F. Vera
  • Patent number: 10533156
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: January 14, 2020
    Assignees: Baylor College of Medicine, Wilson Wolf Manufacturing
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Patent number: 10385316
    Abstract: The present invention encompasses methods and compositions for the generation and use of cytotoxic T lymphocytes that target multiple viruses or that are specific for multiple tumor antigens. In specific embodiments, the generation methods employ use of certain cytokines to promote proliferation and reduce cell death in an activated T cell population and/or that employ a particular bioreactor having a gas permeable membrane.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 20, 2019
    Assignees: Baylor College of Medicine, Wilson Wolf Manufacturing
    Inventors: Ann Marie Leen, Ulrike Gerdemann, Cliona M. Rooney, Juan F. Vera Valdes, John R. Wilson
  • Patent number: 10351824
    Abstract: The present disclosure relates to a novel process for expanding T cells, such as autologous T cells, cell populations therefrom, pharmaceutical compositions comprising the said cell populations and use of the cells and compositions for treatment, particular the treatment or prophylaxis of virus infection and/or cancer, for example in immune compromised or immune competent human patients.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 16, 2019
    Assignees: Cell Medica Limited, Baylor College of Medicine
    Inventors: Cliona M. Rooney, Ann M. Leen, Juan F. Vera, Minhtran V. Ngo, Rainer Ludwig Knaus
  • Publication number: 20170267973
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Application
    Filed: December 30, 2016
    Publication date: September 21, 2017
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson
  • Patent number: 9567565
    Abstract: An improved method of culturing cells for cell therapy applications that includes growing desired cells in the presence of antigen-presenting cells and/or feeder cells and with medium volume to surface area ratio of up to 1 ml/cm2 if the growth surface is not comprised of gas permeable material and up to 2 ml/cm2 if the growth surface is comprised of gas permeable material. The desired cells are at a surface density of less than 0.5×106 cells/cm2 at the onset of a production cycle, and the surface density of the desired cells plus the surface density of the antigen presenting cells and/or feeder cells are at least about 1.25×105 cells/cm2.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: February 14, 2017
    Inventors: Juan F. Vera, Cliona M. Rooney, Ann M. Leen, John R. Wilson