Patents by Inventor Juan G. Alzate

Juan G. Alzate has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305255
    Abstract: Embodiments herein describe techniques for a memory device including at least two memory cells. A first memory cell includes a first storage cell and a first transistor to control access to the first storage cell. A second memory cell includes a second storage cell and a second transistor to control access to the second storage cell. A shared contact electrode is shared between the first transistor and the second transistor, the shared contact electrode being coupled to a source area or a drain area of the first transistor, coupled to a source area or a drain area of the second transistor, and further being coupled to a bit line of the memory device. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 24, 2020
    Publication date: September 30, 2021
    Inventors: Juan G. ALZATE VINASCO, Travis W. LAJOIE, Abhishek A. SHARMA, Kimberly L. PIERCE, Elliot N. TAN, Yu-Jin CHEN, Van H. LE, Pei-Hua WANG, Bernhard SELL
  • Patent number: 11063088
    Abstract: A memory device includes a first electrode, a second electrode and a magnetic tunnel junction (MTJ) between the first electrode and the second electrode. The MTJ includes a fixed magnet, a free magnet and a tunnel barrier between the fixed magnet and the free magnet. The MTJ further includes a conductive layer between the free magnet and the second electrode, the conductive layer having a metallic dopant, where the metallic dopant has a concentration that increase with distance from an interface between the free magnet and the conductive layer. A capping layer is between the conductive layer and the second electrode.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Daniel Ouellette, Christopher Wiegand, Justin Brockman, Tofizur Rahman, Oleg Golonzka, Angeline Smith, Andrew Smith, James Pellegren, Aaron Littlejohn, Juan G. Alzate-Vinasco, Yu-Jin Chen, Tanmoy Pramanik
  • Publication number: 20210175284
    Abstract: A memory device includes a first electrode, a second electrode and a magnetic tunnel junction (MTJ) between the first electrode and the second electrode. The MTJ includes a fixed magnet, a free magnet and a tunnel barrier between the fixed magnet and the free magnet. The MTJ further includes a conductive layer between the free magnet and the second electrode, the conductive layer having a metallic dopant, where the metallic dopant has a concentration that increase with distance from an interface between the free magnet and the conductive layer. A capping layer is between the conductive layer and the second electrode.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Applicant: Intel Corporation
    Inventors: Daniel Ouellette, Christopher Wiegand, Justin Brockman, Tofizur Rahman, Oleg Golonzka, Angeline Smith, Andrew Smith, James Pellegren, Aaron Littlejohn, Juan G. Alzate-Vinasco, Yu-Jin Chen, Tanmoy Pramanik
  • Publication number: 20210125992
    Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure above a substrate. The interconnect structure may include an inter-level dielectric (ILD) layer and a separation layer above the ILD layer. A first conductor and a second conductor may be within the ILD layer. The first conductor may have a first physical configuration, and the second conductor may have a second physical configuration different from the first physical configuration. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 22, 2017
    Publication date: April 29, 2021
    Inventors: Travis LAJOIE, Tahir GHANI, Jack T. KAVALIEROS, Shem O. OGADHOH, Yih WANG, Bernhard SELL, Allen GARDINER, Blake LIN, Juan G. ALZATE VINASCO, Pei-Hua WANG, Chieh-Jen KU, Abhishek A. SHARMA
  • Publication number: 20210098373
    Abstract: Integrated circuit structures having differentiated interconnect lines in a same dielectric layer, and methods of fabricating integrated circuit structures having differentiated interconnect lines in a same dielectric layer, are described. In an example, an integrated circuit structure includes an inter-layer dielectric (ILD) layer above a substrate. A plurality of conductive interconnect lines is in the ILD layer. The plurality of conductive interconnect lines includes a first interconnect line having a first height, and a second interconnect line immediately laterally adjacent to but spaced apart from the first interconnect line, the second interconnect line having a second height less than the first height.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Juan G. ALZATE VINASCO, Chieh-Jen KU, Shem O. OGADHOH, Allen B. GARDINER, Blake C. LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
  • Publication number: 20200411426
    Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Ting CHEN, Vinaykumar V. HADAGALI
  • Publication number: 20200411524
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first set of memory cells and a first selector are formed within a first group of metal layers and inter-level dielectric (ILD) layers above the substrate. A second set of memory cells and a second selector are formed within a second group of metal layers and ILD layers above the first group of metal layers and ILD layers. The first selector is coupled to the first set of memory cells to select one or more memory cells of the first set of memory cells based on a first control signal. In addition, the second selector is coupled to the second set of memory cells to select one or more memory cells of the second set of memory cells based on a second control signal. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Umut ARSLAN, Juan G. ALZATE VINASCO, Fatih HAMZAOGLU
  • Publication number: 20200411635
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. The semiconductor device further includes a capacitor having a bottom plate above the substrate, a capacitor dielectric layer adjacent to and above the bottom plate, and a top plate adjacent to and above the capacitor dielectric layer. The bottom plate, the capacitor dielectric layer, and the top plate are within the first ILD layer or the second ILD layer. Furthermore, an air gap is formed next to the top plate and below a top surface of the second ILD layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
  • Publication number: 20200411520
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
  • Publication number: 20200411525
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Jared STOEGER, Yu-Wen HUANG, Shu ZHOU
  • Patent number: 10832749
    Abstract: An embodiment includes an apparatus including: a substrate; a perpendicular magnetic tunnel junction (pMTJ), on the substrate, including a first fixed layer, a second fixed layer, and a free layer between the first and second fixed layers; a first dielectric layer between the first fixed layer and the free layer; and a second layer between the second fixed layer and the free layer. Other embodiments are described herein.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 10, 2020
    Assignee: Intel Corporation
    Inventors: Charles C. Kuo, Justin S. Brockman, Juan G. Alzate Vinasco, Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, Mark L. Doczy, Satyarth Suri, Robert S. Chau
  • Publication number: 20200350412
    Abstract: Thin film transistors having alloying source or drain metals are described. In an example, an integrated circuit structure includes a semiconducting oxide material over a gate electrode. A pair of conductive contacts is on a first region of the semiconducting oxide material. A second region of the semiconducting oxide material is between the pair of conductive contacts. The pair of conductive contacts includes a metal species. The metal species is in the first region of the semiconducting oxide material but not in the second region of the semiconducting oxide material.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Gregory GEORGE, Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Juan G. ALZATE VINASCO
  • Publication number: 20200194434
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate oriented in a horizontal direction, and a memory cell including a transistor and a capacitor above the substrate. The transistor includes a gate electrode oriented in a vertical direction substantially orthogonal to the horizontal direction, and a channel layer oriented in the vertical direction, around the gate electrode and separated by a gate dielectric layer from the gate electrode. The capacitor is within an inter-level dielectric layer above the substrate. The capacitor includes a first plate coupled with a second portion of the channel layer of the transistor, and a second plate separated from the first plate by a capacitor dielectric layer. The first plate of the capacitor is also a source electrode of the transistor. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Inventors: Juan G. ALZATE VINASCO, Abhishek A. SHARMA, Fatih HAMZAOGLU, Bernhard SELL, Pei-Hua WANG, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Chieh-Jen KU, Travis W. LAJOIE, Umut ARSLAN
  • Publication number: 20200091156
    Abstract: Described herein are two transistor (2T) memory cells that use TFTs as access and gain transistors. When one or both transistors of a 2T memory cell are implemented as TFTs, these transistors may be provided in different layers above a substrate, enabling a stacked architecture. An example 2T memory cell includes an access TFT provided in a first layer over a substrate, and a gain TFT provided in a second layer over the substrate, the first layer being between the substrate and the second layer (i.e., the gain TFT is stacked in a layer above the access TFT). Stacked TFT based 2T memory cells allow increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Juan G. Alzate-Vinasco, Fatih Hamzaoglu, Bernhard Sell, Pei-hua Wang, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Umut Arslan, Travis W. Lajoie, Chieh-jen Ku
  • Publication number: 20200043536
    Abstract: An embodiment includes an apparatus comprising: a substrate; a perpendicular magnetic tunnel junction (pMTJ), on the substrate, comprising a first fixed layer, a second fixed layer, and a free layer between the first and second fixed layers; a first dielectric layer between the first fixed layer and the free layer; and a second layer between the second fixed layer and the free layer. Other embodiments are described herein.
    Type: Application
    Filed: June 26, 2015
    Publication date: February 6, 2020
    Inventors: Charles C. Kuo, Justin S. Brockman, Juan G. Alzate Vinasco, Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, Mark L. Doczy, Satyarth Suri, Robert S. Chau
  • Publication number: 20200035683
    Abstract: Described herein are arrays of embedded dynamic random-access memory (eDRAM) cells that use TFTs as selector transistors. When at least some selector transistors are implemented as TFTs, different eDRAM cells may be provided in different layers above a substrate, enabling a stacked architecture. An example stacked TFT based eDRAM includes one or more memory cells provided in a first layer over a substrate and one or more memory cells provided in a second layer, above the first layer, where at least the memory cells in the second layer, but preferably the memory cells in both the first and second layers, use TFTs as selector transistors. Stacked TFT based eDRAM allows increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Applicant: Inte Corpooration
    Inventors: Abhishek A. Sharma, Juan G. Alzate-Vinasco, Fatih Hamzaoglu, Bernhard Sell, Pei-hua Wang, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Umut Arslan, Travis W. Lajoie, Chieh-jen Ku
  • Publication number: 20200006635
    Abstract: A memory device includes a perpendicular magnetic tunnel junction (pMTJ) stack, between a bottom electrode and a top electrode. In an embodiment, the pMTJ includes a fixed magnet, a tunnel barrier above the fixed magnet and a free magnet structure on the tunnel barrier. The free magnet structure includes a first free magnet on the tunnel barrier and a second free magnet above the first free magnet, wherein at least a portion of the free magnet proximal to an interface with the free magnet includes a transition metal. The free magnet structure having a transition metal between the first and the second free magnets advantageously improves the switching efficiency of the MTJ, while maintaining a thermal stability of at least 50 kT.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Tofizur Rahman, Christopher J. Wiegand, Justin S. Brockman, Daniel G. Ouellette, Angeline K. Smith, Andrew Smith, Pedro A. Quintero, Juan G. Alzate-Vinasco, Oleg Golonzka
  • Publication number: 20190326296
    Abstract: Described herein are embedded dynamic random-access memory (eDRAM) memory cells and arrays, as well as corresponding methods and devices. An exemplary eDRAM memory array implements a memory cell that uses a thin-film transistor (TFT) as a selector transistor. One source/drain (S/D) electrode of the TFT is coupled to a capacitor for storing a memory state of the cell, while the other S/D electrode is coupled to a bitline. The bitline may be a shallow bitline in that a thickness of the bitline may be smaller than a thickness of one or more metal interconnects provided in the same metal layer as the bitline but used for providing electrical connectivity for components outside of the memory array. Such a bitline may be formed in a separate process than said one or more metal interconnects. In an embodiment, the memory cells may be formed in a back end of line process.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 24, 2019
    Applicant: Intel Corporation
    Inventors: Yih Wang, Abhishek A. Sharma, Tahir Ghani, Allen B. Gardiner, Travis W. Lajoie, Pei-hua Wang, Chieh-jen Ku, Bernhard Sell, Juan G. Alzate-Vinasco, Blake C. Lin
  • Patent number: 10365894
    Abstract: Described is an apparatus which comprises: a magnetic tunneling junction (MTJ) device with out-of-plane magnetizations for its free and fixed magnetic layers, and configured to have a magnetization offset away from a center and closer to a switching threshold of the MTJ device; and logic for generating random numbers according to a resistive state of the MTJ device.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: July 30, 2019
    Assignee: Intel Corporation
    Inventors: Charles C. Kuo, Justin S. Brockman, Juan G. Alzate Vinasco, Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, Mark L. Doczy, Satyarth Suri, Robert S. Chau, Prashant Majhi, Ravi Pillarisetty, Elijah V. Karpov
  • Publication number: 20180165065
    Abstract: Described is an apparatus which comprises: a magnetic tunneling junction (MTJ) device with out-of-plane magnetizations for its free and fixed magnetic layers, and configured to have a magnetization offset away from a center and closer to a switching threshold of the MTJ device; and logic for generating random numbers according to a resistive state of the MTJ device.
    Type: Application
    Filed: June 17, 2015
    Publication date: June 14, 2018
    Inventors: Charles C. KUO, Justin S. BROCKMAN, Juan G. ALZATE VINASCO, Kaan OGUZ, Kevin P. O'BRIEN, Brian S. DOYLE, Mark L. DOCZY, Satyarth SURI, Robert S. CHAU, Prashant MAJHI, Ravi PILLARISETTY, Elijah V. KARPOV