Patents by Inventor Juan Lloret Soler

Juan Lloret Soler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11517199
    Abstract: Embodiments for crossing an occlusion by controlling a guide with the aid of optical coherence tomography (OCT) data are described. Embodiments include transmitting one or more beams of radiation via one or more waveguides on a flexible substrate within a guide wire. One or more beams of scattered or reflected radiation may be received from a sample via one or more waveguides. Depth-resolved optical data of the sample may be generated based on the received beams of scattered or reflected radiation. The depth-resolved data may be used for determining at least one of a distance between the guide wire and a wall of the artery and a distance between the guide wire and an occlusion within the artery. A position of the guide wire within the artery may then be controlled based on the determined distance or distances.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 6, 2022
    Assignee: Medlumics S.L.
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Publication number: 20210077181
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes one or more electrodes configured to apply RF energy to a portion of a sample in contact with the electrode. The distal section also includes a plurality of optical elements configured to transmit one or more beams of exposure radiation away from the distal section of the catheter. The proximal section includes an optical source configured to generate a source beam of radiation and a detector configured to generate depth-resolved optical data. The multiplexer is configured to generate the one or more beams of exposure radiation from the source beam of radiation.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 18, 2021
    Applicant: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler
  • Patent number: 10835313
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes one or more electrodes configured to apply RF energy to a portion of a sample in contact with the electrode. The distal section also includes a plurality of optical elements configured to transmit one or more beams of exposure radiation away from the distal section of the catheter. The proximal section includes an optical source configured to generate a source beam of radiation and a detector configured to generate depth-resolved optical data. The multiplexer is configured to generate the one or more beams of exposure radiation from the source beam of radiation.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: November 17, 2020
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler
  • Publication number: 20190380589
    Abstract: Described herein are devices and methods for performing merged optical tissue evaluation and laser ablation with a catheter system that includes a processing device and a catheter with proximal and distal sections with a plurality of optical ports that are configured to transmit beams of exposure radiation to a sample, receive one or beams of scattered radiation, and transmit laser ablation energy such that a portion of the sample is ablated. The processing device includes a first optical source configured to generate a source beam of exposure radiation and a second optical source configured to generate the laser ablation energy. The catheter system further includes one or more multiplexers that direct the beams of exposure radiation to the plurality of optical ports, combine the one or more beams of scattered radiation, and direct the laser ablation energy to at least one optical port of the plurality of optical ports.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 19, 2019
    Inventors: Juan LLORET SOLER, José Luis RUBIO GUIVERNAU
  • Publication number: 20190175023
    Abstract: Embodiments for crossing an occlusion by controlling a guide with the aid of optical coherence tomography (OCT) data are described. Embodiments include transmitting one or more beams of radiation via one or more waveguides on a flexible substrate within a guide wire. One or more beams of scattered or reflected radiation may be received from a sample via one or more waveguides. Depth-resolved optical data of the sample may be generated based on the received beams of scattered or reflected radiation. The depth-resolved data may be used for determining at least one of a distance between the guide wire and a wall of the artery and a distance between the guide wire and an occlusion within the artery. A position of the guide wire within the artery may then be controlled based on the determined distance or distances.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicant: Medlumics S.L.
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Patent number: 10206584
    Abstract: Systems and methods for controlling a guide with the aid of optical coherence tomography (OCT) data are described. A guide wire includes at least one optical fiber, a flexible substrate, and one or more optical elements. The at least one optical fiber transmits a source beam of radiation. The flexible substrate includes a plurality of waveguides. At least one of the plurality of waveguides transmits one or more beams of radiation away from the guide wire, and at least one of the plurality of waveguides receives one or more beams of scattered radiation that have been reflected or scattered from a sample. The multiplexer generates the one or more beams of exposure radiation from the source beam of radiation. The one or more optical elements at least one of focus and steer the one or more beams of radiation.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: February 19, 2019
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Patent number: 10194981
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes several interconnected optical ports configured to transmit exposure radiation toward a sample and receive radiation that have been reflected or scattered from the sample. The interconnected optical ports are formed on a substrate having rigid sections and flexible sections arranged around the distal section. A holder maintains the interconnected optical elements in a fixed spatial relationship.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 5, 2019
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler, Juan Sancho Durá
  • Patent number: 10111706
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes several interconnected optical ports configured to transmit exposure radiation toward a sample and receive radiation that have been reflected or scattered from the sample. The interconnected optical ports are formed on a substrate having rigid sections and flexible sections arranged around the distal section. A holder maintains the interconnected optical elements in a fixed spatial relationship.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: October 30, 2018
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler, Juan Sancho Durá
  • Patent number: 9976844
    Abstract: A chip package includes a housing, one or more electrical connections coupled to an exterior of the housing, a photonic integrated circuit, and a scanning unit. Both the photonic integrated circuit and the scanning unit are disposed within the housing. The photonic integrated circuit has at least one waveguide designed to guide a beam of light. The scanning unit is designed to laterally scan the beam of light across a focal plane outside of the housing. The scanning unit is aligned with the photonic integrated circuit such that the beam of light is coupled between the photonic integrated circuit and the scanning unit.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: May 22, 2018
    Assignee: Medlumics S.L.
    Inventors: Juan Lloret Soler, Juan Sancho Durá, José Luis Rubio Guivernau, Eduardo Margallo Balbás, William Kennedy Landles, Andrés Cifuentes, Blair Ungar, Kirill Zinoviev
  • Publication number: 20170027639
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes several interconnected optical ports configured to transmit exposure radiation toward a sample and receive radiation that have been reflected or scattered from the sample. The interconnected optical ports are formed on a substrate having rigid sections and flexible sections arranged around the distal section. A holder maintains the interconnected optical elements in a fixed spatial relationship.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 2, 2017
    Applicant: MEDLUMICS S.L.
    Inventors: Eduardo MARGALLO BALBÁS, José Luis RUBIO GUIVERNAU, Santiago JIMÉNEZ VALERO, Alejandro BARRIGA RIVERA, Justo CONTRERAS BERMEJO, Juan LLORET SOLER, Juan SANCHO DURÁ
  • Publication number: 20160238371
    Abstract: A chip package includes a housing, one or more electrical connections coupled to an exterior of the housing, a photonic integrated circuit, and a scanning unit. Both the photonic integrated circuit and the scanning unit are disposed within the housing. The photonic integrated circuit has at least one waveguide designed to guide a beam of light. The scanning unit is designed to laterally scan the beam of light across a focal plane outside of the housing. The scanning unit is aligned with the photonic integrated circuit such that the beam of light is coupled between the photonic integrated circuit and the scanning unit.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 18, 2016
    Inventors: Juan LLORET SOLER, Juan SANCHO DURÁ, José Luis RUBIO GUIVERNAU, Eduardo MARGALLO BALBÁS, William Kennedy LANDLES, Andrés CIFUENTES, Blair UNGAR, Kirill ZINOVIEV
  • Patent number: 9310185
    Abstract: Systems and methods are presented for modulating a beam of radiation, such that the modulated beam exhibits substantially null residual amplitude modulation (RAM). An electro-optical modulator is presented that includes a waveguide, a first region associated with the waveguide and a second region associated with the waveguide. The waveguide is designed to guide a beam of radiation. A first electric potential applied to the first region causes a first modulation to the beam of radiation while a second electric potential applied to the second region causes a second modulation to the beam of radiation. The first modulation combined with the second modulation provides substantially null residual amplitude modulation of the beam of radiation.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 12, 2016
    Assignee: Medlumics, S.L.
    Inventors: Juan Lloret Soler, Kirill Zinoviev, José Luis Rubio Guivernau, Eduardo Margallo Balbás
  • Publication number: 20160038031
    Abstract: Systems and methods for controlling a guide with the aid of optical coherence tomography (OCT) data are described. A guide wire includes at least one optical fiber, a flexible substrate, and one or more optical elements. The at least one optical fiber transmits a source beam of radiation. The flexible substrate includes a plurality of waveguides. At least one of the plurality of waveguides transmits one or more beams of radiation away from the guide wire, and at least one of the plurality of waveguides receives one or more beams of scattered radiation that have been reflected or scattered from a sample. The multiplexer generates the one or more beams of exposure radiation from the source beam of radiation. The one or more optical elements at least one of focus and steer the one or more beams of radiation.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Publication number: 20150209105
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes one or more electrodes configured to apply RF energy to a portion of a sample in contact with the electrode. The distal section also includes a plurality of optical elements configured to transmit one or more beams of exposure radiation away from the distal section of the catheter. The proximal section includes an optical source configured to generate a source beam of radiation and a detector configured to generate depth-resolved optical data. The multiplexer is configured to generate the one or more beams of exposure radiation from the source beam of radiation.
    Type: Application
    Filed: January 28, 2015
    Publication date: July 30, 2015
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler
  • Publication number: 20140368828
    Abstract: Systems and methods are presented for modulating a beam of radiation, such that the modulated beam exhibits substantially null residual amplitude modulation (RAM). An electro-optical modulator is presented that includes a waveguide, a first region associated with the waveguide and a second region associated with the waveguide. The waveguide is designed to guide a beam of radiation. A first electric potential applied to the first region causes a first modulation to the beam of radiation while a second electric potential applied to the second region causes a second modulation to the beam of radiation. The first modulation combined with the second modulation provides substantially null residual amplitude modulation of the beam of radiation.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 18, 2014
    Inventors: Juan Lloret Soler, Kirill Zinoviev, José Luis Rubio Guivernau, Eduardo Margallo Balbás