Patents by Inventor Juanita N. Kurtin

Juanita N. Kurtin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150240153
    Abstract: Nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, and methods of fabricating nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, are described. In an example, a semiconductor structure includes a nano-crystalline core composed of a group I-III-VI semiconductor material. A nano-crystalline shell composed of a second, different, semiconductor material at least partially surrounds the nano-crystalline core. In one specific example, the nano-crystalline core/nano-crystalline shell pairing has a photoluminescence quantum yield (PLQY) of greater than 60%. In another specific example, the nano-crystalline core/nano-crystalline shell pairing is a Type I hetero-structure.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 27, 2015
    Inventors: Steven M. Hughes, Juanita N. Kurtin
  • Publication number: 20150236222
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating are described. In an example, a semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. The semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Application
    Filed: May 5, 2015
    Publication date: August 20, 2015
    Inventors: Juanita N. KURTIN, Matthew J. CARILLO, Steven M. HUGHES, Brian THEOBALD, Oun-Ho PARK, Georgeta MASSON
  • Publication number: 20150203747
    Abstract: Quantum dot polymer composites for on-chip light emitting diode applications are described. In an example, a composite for on-chip light emitting diode application includes a polymer matrix, a plurality of quantum dots dispersed in the polymer matrix, and a base dispersed in the polymer matrix.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 23, 2015
    Inventors: Kari N. Haley, Benjamin Daniel Mangum, Weiwen Zhao, Nathan Evan Stott, Juanita N. Kurtin
  • Publication number: 20150053914
    Abstract: Semiconductor structures having insulators coatings and methods of fabricating semiconductor structures having insulators coatings are described. In an example, a method of coating a semiconductor structure involves adding a silicon-containing silica precursor species to a solution of nanocrystals. The method also involves, subsequently, forming a silica-based insulator layer on the nanocrystals from a reaction involving the silicon-containing silica precursor species. The method also involves adding additional amounts of the silicon-containing silica precursor species after initial forming of the silica-based insulator layer while continuing to form the silica-based insulator layer to finally encapsulate each of the nanocrystals.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Inventors: Juanita N. Kurtin, Weiwen Zhao
  • Publication number: 20150028365
    Abstract: A lighting apparatus includes a light source and a light conversion layer disposed proximate the light source, the light conversion layer comprising a plurality of quantum dots (QDs) or phosphors, and a plurality of transparent thermally conductive particles, embedded in a matrix material to improve heat dissipation.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 29, 2015
    Inventors: Juanita N. Kurtin, Nathan Evan Stott
  • Publication number: 20150021550
    Abstract: Semiconductor structures having a nanocrystalline core and nanocrystalline shell pairing compositional transition layers are described. In an example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A compositional transition layer is disposed between, and in contact with, the nanocrystalline core and nanocrystalline shell and has a composition intermediate to the first and second semiconductor materials. In another example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A nanocrystalline outer shell surrounds the nanocrystalline shell and is composed of a third semiconductor material.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 22, 2015
    Inventor: Juanita N. Kurtin
  • Publication number: 20150008393
    Abstract: Networks of semiconductor structures with fused insulator coatings and methods of fabricating networks of semiconductor structures with fused insulator coatings are described. In an example, a semiconductor structure includes an insulator network. A plurality of discrete semiconductor nanocrystals is disposed in the insulator network. Each of the plurality of discrete semiconductor nanocrystals is spaced apart from one another by the insulator network.
    Type: Application
    Filed: August 21, 2013
    Publication date: January 8, 2015
    Inventors: Benjamin Daniel Mangum, Weiwen Zhao, Kari N. Haley, Juanita N. Kurtin
  • Publication number: 20150011029
    Abstract: Networks of semiconductor structures with fused insulator coatings and methods of fabricating networks of semiconductor structures with fused insulator coatings are described. In an example, a method of fabricating a semiconductor structure involves forming a mixture including a plurality of discrete semiconductor nanocrystals. Each of the plurality of discrete semiconductor nanocrystals is discretely coated by an insulator shell. The method also involves adding a base to the mixture to fuse the insulator shells of each of the plurality of discrete nanocrystals, providing an insulator network. Each of the plurality of discrete semiconductor nanocrystals is spaced apart from one another by the insulator network. The base one such as, but not limited to, LiOH, RbOH, CsOH, MgOH, Ca(OH)2, Sr(OH)2, Ba(OH)2, (Me)4NOH, (Et)4NOH, or (Bu)4NOH.
    Type: Application
    Filed: December 12, 2013
    Publication date: January 8, 2015
    Inventors: Benjamin Daniel Mangum, Weiwen Zhao, Kari N. Haley, Juanita N. Kurtin, Nathan Evan Stott
  • Patent number: 8889457
    Abstract: Compositions having a dispersion of nano-particles therein and methods of fabricating compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and discrete prepolymer molecules. A polymer matrix is formed from the discrete prepolymer molecules. The polymer matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including discrete prepolymer molecules. The medium is a liquid at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 18, 2014
    Assignee: Pacific Light Technologies Corp.
    Inventors: Juanita N. Kurtin, Georgeta Masson
  • Publication number: 20140332723
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventors: Juanita N. Kurtin, Michael Jansen
  • Publication number: 20140264257
    Abstract: Nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, and methods of fabricating nano-crystalline core and nano-crystalline shell pairings having group I-III-VI material nano-crystalline cores, are described. In an example, a semiconductor structure includes a nano-crystalline core composed of a group I-III-VI semiconductor material. A nano-crystalline shell composed of a second, different, group I-III-VI semiconductor material at least partially surrounds the nano-crystalline core.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Steven M. Hughes, Juanita N. Kurtin
  • Publication number: 20140254131
    Abstract: A lighting apparatus includes a housing structure, a light source supported within the housing structure, and a light coversion layer disposed above the light source. The light conversion layer comprises a plurality of non- or low-self absorbing quantum dots (QDs) embedded in a matrix material, each QD having a different light emission profile that is a function of a size and/or composition of the QD, each of the plurality of QDs selected to achieve a defined spectral emission profile for the lighting device when the plurality of QDs is illuminated by the light source.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Inventors: Julian OSINSKI, Juanita N. KURTIN, Benjamin Daniel MANGUM, Ron NELSON
  • Publication number: 20140252274
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 11, 2014
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Publication number: 20140170789
    Abstract: Ceramic compositions having a dispersion of nano-particles therein and methods of fabricating ceramic compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and ceramic precursor molecules. A ceramic matrix is formed from the ceramic precursor molecules. The ceramic matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including ceramic precursor molecules. The medium is a liquid or gel at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 19, 2014
    Inventors: Juanita N. KURTIN, Georgeta MASSON
  • Publication number: 20140166973
    Abstract: Compositions having a dispersion of nano-particles therein and methods of fabricating compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and discrete prepolymer molecules. A polymer matrix is formed from the discrete prepolymer molecules. The polymer matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including discrete prepolymer molecules. The medium is a liquid at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Inventors: Juanita N. Kurtin, Georgeta Masson
  • Publication number: 20140170786
    Abstract: Ceramic compositions having a dispersion of nano-particles therein and methods of fabricating ceramic compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and ceramic precursor molecules. A ceramic matrix is formed from the ceramic precursor molecules. The ceramic matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including ceramic precursor molecules. The medium is a liquid or gel at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Inventors: Juanita N. Kurtin, Georgeta Masson
  • Publication number: 20140166945
    Abstract: Ceramic compositions having a dispersion of nano-particles therein and methods of fabricating ceramic compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and ceramic precursor molecules. A ceramic matrix is formed from the ceramic precursor molecules. The ceramic matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including ceramic precursor molecules. The medium is a liquid or gel at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 19, 2014
    Inventors: Juanita N. Kurtin, Georgeta Masson
  • Publication number: 20140117311
    Abstract: Semiconductor structures having a nanocrystalline core and nanocrystalline shell pairing compositional transition layers are described. In an example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A compositional transition layer is disposed between, and in contact with, the nanocrystalline core and nanocrystalline shell and has a composition intermediate to the first and second semiconductor materials. In another example, a semiconductor structure includes a nanocrystalline core composed of a first semiconductor material. A nanocrystalline shell composed of a second semiconductor material surrounds the nanocrystalline core. A nanocrystalline outer shell surrounds the nanocrystalline shell and is composed of a third semiconductor material.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 1, 2014
    Inventor: Juanita N. Kurtin
  • Publication number: 20140049155
    Abstract: Lighting devices having highly luminescent quantum dots are described. In an example, a lighting apparatus includes a housing structure or a substrate. The lighting apparatus also includes a light emitting diode supported within the housing structure or disposed on the substrate, respectively. The lighting apparatus also includes a light conversion layer disposed above the light emitting diode. The light conversion layer includes a plurality of quantum dots. Each quantum dot includes an anisotropic nanocrystalline core having a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. Each quantum dot also includes a nanocrystalline shell having a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Inventor: Juanita N. Kurtin
  • Publication number: 20130320298
    Abstract: A semiconductor structure comprises a nanocrystalline core of a first semiconductor material, a nanocrystalline shell of a second, different, semiconductor material at least partially surrounding the nanocrystalline core, and an insulator layer encapsulating the nanocrystalline shell and core, wherein an outer surface of the insulator layer is ligand-functionalized.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 5, 2013
    Inventors: Juanita N. KURTIN, Matthew J. CARILLO, Steven M. HUGHES, Brian THEOBALD, Colin C. REESE, Oun-Ho PARK, Georgeta MASSON