Patents by Inventor Jubo Zhang

Jubo Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240352492
    Abstract: A method including reacting carboxylic acids obtained from fermentation and a carboxylic acid recovery step from said fermentation to produce short- or medium-chain triglycerides, wherein the reacting carboxylic acids comprises direct esterification with glycerol in the presence of a catalyst. Such method mentioned above wherein the produced short- or medium-chain triglycerides are further interesterified with an oil, butter, fat or other lipids in the presence of a catalyst to produce structured lipids. Yet another method comprising reacting carboxylic acids obtained from fermentation and a carboxylic acid recovery step from said fermentation to produce structured lipids, wherein reacting the carboxylic acids comprises transesterification with an oil, butter, fat or other lipids in the presence of a catalyst. The use of such short-chain triglycerides, medium-chain triglycerides and structured lipids as nutritional additives, dietary supplements, or both.
    Type: Application
    Filed: April 12, 2024
    Publication date: October 24, 2024
    Applicant: BioVeritas, LLC
    Inventors: Cesar Granda, Jubo Zhang
  • Publication number: 20240334941
    Abstract: A method for producing a preservative salt includes feeding a biodegradable feedstock to a mixed consortium of microorganisms or microbiomes to produce a fermentation effluent comprising a carboxylic acid mixture; recovering the carboxylic acid mixture from the fermentation effluent; separating an acetic acid and propionic acid fraction from the carboxylic acid mixture; and reacting the acetic acid and the propionic acid fraction with a base to produce the preservative salt comprising an acetic acid and propionic acid salt. The carboxylic acids have greater than 80% bio-based carbon content.
    Type: Application
    Filed: April 2, 2024
    Publication date: October 10, 2024
    Inventors: Cesar B. Granda, Jubo Zhang
  • Publication number: 20140335586
    Abstract: Herein disclosed is a method comprising: converting at least a portion of the biomass into medium-chain fatty acids or carboxylic acids ranging from C4 to C9; reacting at least a portion of the medium-chain fatty acids or carboxylic acids in a ketonization reactor to produce a ketonization product; and reacting at least a portion of the ketonization product in a hydrodeoxygenation reactor to remove substantially all oxygen and produce a hydrodeoxygenation product comprising n-paraffins. Herein also disclosed is a system comprising: a fermentation unit to convert the biomass into medium-chain fatty acids or carboxylic acids ranging from C4 to C9; a ketonization reactor configured to receive at least a portion of the medium-chain fatty acids or carboxylic acids and to produce a ketonization product; and a hydrodeoxygenation reactor configured to receive at least a portion of the ketonization product and to produce a hydrodeoxygenation product comprising n-paraffins.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 13, 2014
    Applicant: EE-TERRABON BIOFUELS LLC
    Inventors: Jubo ZHANG, Cesar B. GRANDA
  • Patent number: 8129305
    Abstract: A catalyst composition and process facilitates the oxidative reforming of low molecular weight hydrocarbons, such as methane, to other hydrocarbons having 2 or more carbon atoms (“C2+ compounds”). Compositions having a formula comprising a metal, tungsten, manganese and oxygen effectively catalyze the oxidative reforming of methane with a high rate of conversion and selectivity. Controlling feed gas flow and catalyst bed temperature controls the exothermic OCM reaction, avoiding runaway reactions or coking. A single or multiple reactor system can be utilized for the oxidative reforming reactions. Using two reactors in series, catalyst embodiments produced favorable yields of C2+ compounds, in the presence or absence of a distributed oxygen feed, and with or without interstage effluent cooling. Removal of desirable end products from the reactor effluent, followed by recycling of the residual effluent, increases the conversion to, and ultimate yield of desirable end product.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 6, 2012
    Assignee: HRD Corporation
    Inventors: Ebrahim Bagherzadeh, Abbas Hassan, Rayford G. Anthony, Aziz Hassan, Bedri Bozkurt, Jubo Zhang
  • Publication number: 20080281136
    Abstract: A catalyst composition and process facilitates the oxidative reforming of low molecular weight hydrocarbons, such as methane, to other hydrocarbons having 2 or more carbon atoms (“C2+ compounds”). Compositions having a formula comprising a metal, tungsten, manganese and oxygen effectively catalyze the oxidative reforming of methane with a high rate of conversion and selectivity. Controlling feed gas flow and catalyst bed temperature controls the exothermic OCM reaction, avoiding runaway reactions or coking. A single or multiple reactor system can be utilized for the oxidative reforming reactions. Using two reactors in series, catalyst embodiments produced favorable yields of C2+ compounds, in the presence or absence of a distributed oxygen feed, and with or without interstage effluent cooling. Removal of desirable end products from the reactor effluent, followed by recycling of the residual effluent, increases the conversion to, and ultimate yield of desirable end product.
    Type: Application
    Filed: April 25, 2008
    Publication date: November 13, 2008
    Applicant: HRD CORP.
    Inventors: Ebrahim Bagherzadeh, Abbas Hassan, Rayford G. Anthony, Aziz Hassan, Bedri Bozkurt, Jubo Zhang