Patents by Inventor Jude Dunne

Jude Dunne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11684914
    Abstract: Methods of transferring material from a first device having an array of microwells to a second device is provided. In some examples, the first device and the second device are moved together toward a stopper plate and impinge on the stopper plate. In other examples, the first device and the second device are kept stationary and an impinging device is impacted on a mounting structure enclosing the first and second devices, causing material transfer from the microwells of the first device to the second device. Apparatus for carrying out the transfer of material is also disclosed.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: June 27, 2023
    Assignee: ISOLATION BIO INC.
    Inventors: Alexander Hallock, Peter Christey, Jude Dunne, Marc Glazer, Benjamin Lane, Joshua Gomes, Shreyas Ashok, Shao Ning Pei
  • Publication number: 20210382056
    Abstract: The present disclosure provides methods, device, assemblies, and systems for dispensing and visualizing single cells. For example, provided herein are systems and methods for dispensing a dispense volume into a plurality of wells of a multi-well device, where, on average, a pre-determined number of cells (e.g., 1-20) are present in the dispense volume, and determining, via a cellular label, the number of cells present in each of the plurality of wells. Such dispensing and cell detection may be repeated a number of times with respect to wells identified as having less than the pre-determined number of cells in order increase the number wells in the multi-well device containing the desired number (e.g., a single cell).
    Type: Application
    Filed: August 16, 2021
    Publication date: December 9, 2021
    Inventors: Alain-Albert Mir, Thomas D. Schaal, Chun-Wah Lin, Shanavaz Loharasp D. Nasarabadi, Jude Dunne, Maithreyan Srinivasan, Patricio A. Espinoza-Vallejos
  • Patent number: 11125752
    Abstract: The present disclosure provides methods, device, assemblies, and systems for dispensing and visualizing single cells. For example, provided herein are systems and methods for dispensing a dispense volume into a plurality of wells of a multi-well device, where, on average, a pre-determined number of cells (e.g., 1-20) are present in the dispense volume, and determining, via a cellular label, the number of cells present in each of the plurality of wells. Such dispensing and cell detection may be repeated a number of times with respect to wells identified as having less than the pre-determined number of cells in order increase the number wells in the multi-well device containing the desired number (e.g., a single cell).
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: September 21, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Alain-Albert Mir, Thomas D. Schaal, Chun-Wah Lin, Shanavaz Loharasp D. Nasarabadi, Jude Dunne, Maithreyan Srinivasan, Patricio A. Espinoza-Vallejos
  • Publication number: 20210252500
    Abstract: Methods of transferring material from a first device having an array of microwells to a second device is provided. In some examples, the first device and the second device are moved together toward a stopper plate and impinge on the stopper plate. In other examples, the first device and the second device are kept stationary and an impinging device is impacted on a mounting structure enclosing the first and second devices, causing material transfer from the microwells of the first device to the second device. Apparatus for carrying out the transfer of material is also disclosed.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 19, 2021
    Inventors: Alexander Hallock, Peter Christey, Jude Dunne, Marc Glazer, Benjamin Lane, Joshua Gomes, Shreyas Ashok, Shao Ning Pei
  • Publication number: 20210115367
    Abstract: A method for identifying a status of at least one cell in a cell culture including resorufin in an anaerobic atmosphere is provided. In the method, the extent of reduction of resorufin in the cell culture to dihyrdoresorufin is measured while the cell culture is maintained in an anaerobic atmosphere. The cell culture may be loaded in microwells of a microfabricated chip positioned in an anaerobic chamber, and the measurement can be based on fluorescence of the cell culture.
    Type: Application
    Filed: October 18, 2020
    Publication date: April 22, 2021
    Inventors: Jude Dunne, Talia Jewell, Alexander Hallock
  • Publication number: 20200384466
    Abstract: A system for loading a sample into microwells of a microfabricated chip. The system can include a vacuum loading module, and can further include a sealing module. The loading module includes enclosed chamber formed a bottom part and a top part. The chamber is provided with at least one vacuum port. The chamber can also be provided with an injection port for injecting a liquid sample into the chamber to thereby load the sample into the microwells of the microchip. The sealing module includes a wheel carrying a sealing film and a mounting platform to position a microfabricated chip, where the rotation of the wheel on the microfabricated chip transfers the sealing film on the top surface of the microfabricated chip. Methods of loading a sample onto the microfabricated chip and sealing the loaded chip are also provided.
    Type: Application
    Filed: June 7, 2020
    Publication date: December 10, 2020
    Inventors: Marc Glazer, Alexander Hallock, Jude Dunne
  • Publication number: 20200225236
    Abstract: The present disclosure provides methods, device, assemblies, and systems for dispensing and visualizing single cells. For example, provided herein are systems and methods for dispensing a dispense volume into a plurality of wells of a multi-well device, where, on average, a pre-determined number of cells (e.g., 1-20) are present in the dispense volume, and determining, via a cellular label, the number of cells present in each of the plurality of wells. Such dispensing and cell detection may be repeated a number of times with respect to wells identified as having less than the pre-determined number of cells in order increase the number wells in the multi-well device containing the desired number (e.g., a single cell).
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Alain-Albert Mir, Thomas D. Schaal, Chun-Wah Lin, Shanavaz Loharasp D. Nasarabadi, Jude Dunne, Maithreyan Srinivasan, Patricio A. Espinoza-Vallejos
  • Patent number: 10641772
    Abstract: The present disclosure provides methods, device, assemblies, and systems for dispensing and visualizing single cells. For example, provided herein are systems and methods for dispensing a dispense volume into a plurality of wells of a multi-well device, where, on average, a pre-determined number of cells (e.g., 1-20) are present in the dispense volume, and determining, via a cellular label, the number of cells present in each of the plurality of wells. Such dispensing and cell detection may be repeated a number of times with respect to wells identified as having less than the pre-determined number of cells in order increase the number wells in the multi-well device containing the desired number (e.g., a single cell).
    Type: Grant
    Filed: February 20, 2016
    Date of Patent: May 5, 2020
    Assignee: TAKARA BIO USA, INC.
    Inventors: Alain-Albert Mir, Thomas D. Schaal, Chun-Wah Lin, Shanavaz Loharasp D. Nasarabadi, Jude Dunne, Maithreyan Srinivasan, Patricio Espinoza
  • Patent number: 10500585
    Abstract: The present invention provides methods, systems, assemblies, and articles for extracting restrained liquid (e.g., surface tension-restrained liquid) from open wells in a chip, where the restrained liquid does not flow out of the wells due to gravity when the wells are held upside down. For example, the present invention provides extraction fixtures that may be attached to, and/or held adjacent to, a chip such that any restrained liquid that is forced out of the open wells is collected by, or flows through, the extraction fixtures. Also for example, the present invention provides assemblies composed of a extraction fixture attached to, and/or held adjacent to, a chip, and methods of subjecting such assemblies to a force such that at least a portion of the restrained liquid in the open wells is forced out and collected by, or flows through, the extraction fixture.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: December 10, 2019
    Assignee: TAKARA BIO USA, INC.
    Inventors: Bradley L. Griswold, Syed A. Husain, Robert Moti, Wesley B. Dong, GoPaul Kotturi, Jude Dunne, Philip Lin
  • Publication number: 20190194720
    Abstract: Provided herein are systems and methods for whole genome amplification and sequencing. In particular, provided herein are systems and methods for detection of nucleic acid variants (e.g., rare variants) in limited samples.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 27, 2019
    Inventors: Alain-Albert Mir, Thomas David Schaal, Jude Dunne, Maithreyan Srinivasan
  • Publication number: 20190112648
    Abstract: The present disclosure provides methods, compositions, and systems employing blocked primers. Aspects of the disclosure include providing a blocked primer reaction mixture that includes a blocked primer and a template nucleic acid component from a single cell; unblocking the blocked primer to produce an active primer reaction mixture and subjecting the activated primer reaction mixture to primer extension conditions, such as nucleic acid amplification conditions.
    Type: Application
    Filed: June 8, 2017
    Publication date: April 18, 2019
    Inventors: Thomas D. Schaal, Jude Dunne, Maithreyan Srinivasan, Alain Mir
  • Patent number: 10208339
    Abstract: Provided herein are systems and methods for whole genome amplification and sequencing. In particular, provided herein are systems and methods for detection of nucleic acid variants (e.g., rare variants) in limited samples.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 19, 2019
    Assignee: TAKARA BIO USA, INC.
    Inventors: Alain-Albert Mir, Thomas David Schaal, Jude Dunne, Maithreyan Srinivasan
  • Patent number: 9995662
    Abstract: The present invention provides methods, systems, assemblies, and articles for capturing single cells with a polymer capture film. In certain embodiments, the polymer capture films comprise a plurality of individual channels with top and bottom openings, where the channels are dimensioned such that a single cell is: i) is captured inside the channel, partially or substantially occluding the channel, when negative pressure is provided to the bottom opening; or ii) is captured by the top opening, but does not enter the channel, when negative pressure is provided to the bottom opening. In some embodiments, the channels of the polymer capture film align with the wells of a multi-well chip such that the cell, or the contents of the single cell, may be transferred to a corresponding well.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: June 12, 2018
    Assignee: TAKARA BIO USA, INC.
    Inventors: Syed A. Husain, Bradley L. Griswold, Michael Slater, Patricio Espinoza, Jude Dunne, Glenn Hein, Maithreyan Srinivasan
  • Publication number: 20170320038
    Abstract: The present invention provides methods, systems, assemblies, and articles for capturing single cells with a capture chip. In certain embodiments, the capture chip comprises a substrate comprising a plurality of cell-sized dimples or wells that each allow a single cell to be captured from a cell suspension. In some embodiments, the dimples or wells of the capture chip align with the holes or wells of a multi-well through-hole chip, and/or a multi-well chip, such that the cell, or the contents of the single cell, may be transferred to a corresponding well of the multi-well chip. In particular embodiments, the bottom of each dimple or well of the capture chip has a positive electrical charge sufficient to attract cells from a cell suspension flowing over the dimples or wells.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Syed A. Husain, Bradley L. Griswold, Michael Slater, Patricio A. Espinoza Vallejos, Jude Dunne, Glenn Hein, Maithreyan Srinivasan
  • Patent number: 9757707
    Abstract: The present invention provides methods, systems, assemblies, and articles for capturing single cells with a capture chip. In certain embodiments, the capture chip comprises a substrate comprising a plurality of cell-sized dimples or wells that each allow a single cell to be captured from a cell suspension. In some embodiments, the dimples or wells of the capture chip align with the holes or wells of a multi-well through-hole chip, and/or a multi-well chip, such that the cell, or the contents of the single cell, may be transferred to a corresponding well of the multi-well chip. In particular embodiments, the bottom of each dimple or well of the capture chip has a positive electrical charge sufficient to attract cells from a cell suspension flowing over the dimples or wells.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: September 12, 2017
    Assignee: Takara Bio USA, Inc.
    Inventors: Syed A. Husain, Bradley L. Griswold, Michael Slater, Patricio A. Espinoza Vallejos, Jude Dunne, Glenn Hein, Maithreyan Srinivasan
  • Publication number: 20170136458
    Abstract: Provided herein are systems and methods for pooling samples from separated sub-arrays in multi-well devices into collection wells of a multi-well sample collection device (e.g., allowing samples in a 100 well sub-array in a 9600-well chip to be pooled into a single collection well of a 96-well plate). In certain embodiments, the systems are composed of: i) a multi-well device, ii) an extraction device; and iii) an extraction device gasket. Also provided herein are dual barcoding (e.g., X-Y barcoding), pooling (e.g., dual pooling), RNA amplification methods (e.g., for single cell analysis), that may employ the extraction devices described herein.
    Type: Application
    Filed: November 18, 2016
    Publication date: May 18, 2017
    Inventors: Jude Dunne, Syed A. Husain, Maithreyan Srinivasan, Amit Zeisel, Hannah Hochgerner, Sten Linnarsson, Shanavaz L. Nasarabadi, Ishminder Mann, Ricelle Acob
  • Publication number: 20170001193
    Abstract: The present invention provides methods, systems, assemblies, and articles for extracting restrained liquid (e.g., surface tension-restrained liquid) from open wells in a chip, where the restrained liquid does not flow out of the wells due to gravity when the wells are held upside down. For example, the present invention provides extraction fixtures that may be attached to, and/or held adjacent to, a chip such that any restrained liquid that is forced out of the open wells is collected by, or flows through, the extraction fixtures. Also for example, the present invention provides assemblies composed of a extraction fixture attached to, and/or held adjacent to, a chip, and methods of subjecting such assemblies to a force such that at least a portion of the restrained liquid in the open wells is forced out and collected by, or flows through, the extraction fixture.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 5, 2017
    Inventors: Bradley L. Griswold, Syed A. Husain, Robert Moti, Wesley B. Dong, GoPaul Kotturi, Jude Dunne, Philip Lin
  • Publication number: 20160304935
    Abstract: Provided herein are systems and methods for whole genome amplification and sequencing. In particular, provided herein are systems and methods for detection of nucleic acid variants (e.g., rare variants) in limited samples.
    Type: Application
    Filed: February 18, 2016
    Publication date: October 20, 2016
    Inventors: Alain-Albert Mir, Thomas David Schaal, Jude Dunne, Maithreyan Srinivasan
  • Patent number: 9447925
    Abstract: The present invention provides methods, systems, assemblies, and articles for extracting restrained liquid (e.g., surface tension-restrained liquid) from open wells in a chip, where the restrained liquid does not flow out of the wells due to gravity when the wells are held upside down. For example, the present invention provides extraction fixtures that may be attached to, and/or held adjacent to, a chip such that any restrained liquid that is forced out of the open wells is collected by, or flows through, the extraction fixtures. Also for example, the present invention provides assemblies composed of a extraction fixture attached to, and/or held adjacent to, a chip, and methods of subjecting such assemblies to a force such that at least a portion of the restrained liquid in the open wells is forced out and collected by, or flows through, the extraction fixture.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: September 20, 2016
    Assignee: WAFERGEN, INC.
    Inventors: Bradley L. Griswold, Syed A. Husain, Robert Moti, Wesley B. Dong, GoPaul Kotturi, Jude Dunne, Philip Lin
  • Publication number: 20160245813
    Abstract: The present disclosure provides methods, device, assemblies, and systems for dispensing and visualizing single cells. For example, provided herein are systems and methods for dispensing a dispense volume into a plurality of wells of a multi-well device, where, on average, a pre-determined number of cells (e.g., 1-20) are present in the dispense volume, and determining, via a cellular label, the number of cells present in each of the plurality of wells. Such dispensing and cell detection may be repeated a number of times with respect to wells identified as having less than the pre-determined number of cells in order increase the number wells in the multi-well device containing the desired number (e.g., a single cell).
    Type: Application
    Filed: February 20, 2016
    Publication date: August 25, 2016
    Inventors: Alain-Albert Mir, Thomas D. Schaal, Chun-Wah Lin, Shanavaz Loharasp D. Nasarabadi, Jude Dunne, Maithreyan Srinivasan, Patricio Espinoza