Patents by Inventor Judith Ann Guzzo

Judith Ann Guzzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11408401
    Abstract: A robotic access system including a robotic fan crawler configured to traverse a surface of a wind turbine and perform one or more tasks. The robotic fan crawler includes one or more fans to adhere the robotic fan crawler to the surface of the wind turbine and one or more driving components to drive the robotic fan crawler along the surface of the wind turbine. The robotic fan crawler further includes one or more omnidirectional cameras operable to capture images of the surface from multiple perspectives during an inspection activity and data collection period. One or more steering components provide directional changes of the robotic fan crawler during operation. A tether cable is coupled to the robotic fan crawler and a tether management system to provide one or more of power, communications, grounding, supplies and distance calculations.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: August 9, 2022
    Assignee: General Electric Company
    Inventors: Todd William Danko, Judith Ann Guzzo, John Robert Hoare, Yakov Polishchuk, Douglas Forman, Shiraj Sen
  • Patent number: 11333132
    Abstract: A system and method for performing a task on a LPS of a wind turbine includes a robotic testing device having a plurality of clamping arms and a LPS test probe coupled to a robotic end effector. The robotic testing device can be positioned around an outer perimeter of a rotor blade of the wind turbine. A cable, coupled to an up-tower anchor point, is attached to the robotic testing device and extends between the anchor point and a support surface. A lightning receptor of the LPS is between the up-tower anchor point and the tower support surface. As the cable is displaced, the robotic testing device moves to a position at which it is clamped to the rotor blade, adjacent the lightning receptor. The end effector moves to position the test probe in contact with the lightning receptor to conduct the test on the LPS.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: May 17, 2022
    Assignee: General Electric Company
    Inventors: Judith Ann Guzzo, Douglas Forman, Todd William Danko, John Robert Hoare
  • Patent number: 11174847
    Abstract: A method including positioning a modular robotic component proximate an area of interest on a surface of a wind turbine. The modular robotic component including a plurality of modules that perform a plurality of tasks. The method further including inspecting the area of interest with the modular robotic component for an indication requiring at least one of repair or upgrade and operating the modular robotic component to perform the plurality of tasks sequentially as the modular robotic component moves along the surface of the wind turbine. A modular robotic component and system including the modular robotic component are disclosed.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 16, 2021
    Assignee: General Electric Company
    Inventors: Todd William Danko, Shiraj Sen, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Publication number: 20210324834
    Abstract: A system and method for performing one or more tasks on a LPS of a wind turbine are disclosed. The system generally includes a robotic testing device including a plurality of clamping arms and a LPS test probe coupled to a robotic end effector. The robotic testing device is configured to be positioned around at least a portion of an outer perimeter of a rotor blade of the wind turbine. A cable, coupled to an up-tower anchor point, is attached to the robotic testing device and extends between the up-tower anchor point and a support surface. A lightning receptor of the LPS is disposed between the up-tower anchor point and the tower support surface. As the cable is displaced, the robotic testing device is moved to a position at which it is clamped to the rotor blade, adjacent the lightning receptor. The end effector is moveable to position the LPS test probe in contact with the lightning receptor to conduct the one or more tests on the LPS.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Inventors: Judith Ann Guzzo, Douglas Forman, Todd William Danko, John Robert Hoare
  • Patent number: 11047368
    Abstract: A system for use in maintaining a wind turbine blade includes a motorized apparatus sized to fit within an interior cavity of the wind turbine blade and configured to travel along a length of the wind turbine blade on an interior surface when the wind turbine blade is in a substantially horizontal position. The motorized apparatus includes a body, a drive system configured to move the body, and a camera coupled to the body. The camera is configured to capture at least one image of the interior surface. The system also includes a controller configured to map the at least one image onto a model of the interior surface. The system also includes an operator interface including a display device. The operator interface is configured to display the model on the display device and receive user input allowing an operator to interact with the model.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 29, 2021
    Assignee: General Electric Company
    Inventors: John Robert Hoare, Todd William Danko, Justin Foehner, Douglas R. Forman, Judith Ann Guzzo, Shiraj Sen
  • Patent number: 10927818
    Abstract: A system and method for inspecting, repairing and upgrading wind turbine rotor blades of a wind turbine. The system including deploying one or more cables via an unmanned aerial vehicle (UAV), a balloon, a ballistic mechanism or a catapult to position the one or more cables in draping engagement with a portion of the wind turbine. A climbing robot is positioned to ascend the one or more cables and perform a task related to inspecting for indications, repair of indications or upgrading the rotor blade. A slave robot system, disposed at the base location and anchored to the one or more cables, provides modulation of the cables for positioning of the climbing robot relative to the wind turbine as it ascends and descends the one or more cables. After completion of the task, the climbing robot descends the one or more cables and the cables are removed from the wind turbine.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 23, 2021
    Assignee: General Electric Company
    Inventors: Shiraj Sen, Todd William Danko, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Publication number: 20210017963
    Abstract: A system for use in maintaining a wind turbine blade includes a motorized apparatus sized to fit within an interior cavity of the wind turbine blade and configured to travel along a length of the wind turbine blade on an interior surface when the wind turbine blade is in a substantially horizontal position. The motorized apparatus includes a body, a drive system configured to move the body, and a camera coupled to the body. The camera is configured to capture at least one image of the interior surface. The system also includes a controller configured to map the at least one image onto a model of the interior surface. The system also includes an operator interface including a display device. The operator interface is configured to display the model on the display device and receive user input allowing an operator to interact with the model.
    Type: Application
    Filed: December 18, 2019
    Publication date: January 21, 2021
    Inventors: John Robert Hoare, Todd William Danko, Justin Foehner, Douglas R. Forman, Judith Ann Guzzo, Shiraj Sen
  • Publication number: 20200325878
    Abstract: A robotic access system including a robotic fan crawler configured to traverse a surface of a wind turbine and perform one or more tasks. The robotic fan crawler includes one or more fans to adhere the robotic fan crawler to the surface of the wind turbine and one or more driving components to drive the robotic fan crawler along the surface of the wind turbine. The robotic fan crawler further includes one or more omnidirectional cameras operable to capture images of the surface from multiple perspectives during an inspection activity and data collection period. One or more steering components provide directional changes of the robotic fan crawler during operation. A tether cable is coupled to the robotic fan crawler and a tether management system to provide one or more of power, communications, grounding, supplies and distance calculations.
    Type: Application
    Filed: April 11, 2019
    Publication date: October 15, 2020
    Inventors: Todd William Danko, Judith Ann Guzzo, John Robert Hoare, Yakov Polishchuk, Douglas Forman, Shiraj Sen
  • Publication number: 20200158091
    Abstract: A system and method for inspecting, repairing and upgrading wind turbine rotor blades of a wind turbine. The system including deploying one or more cables via an unmanned aerial vehicle (UAV), a balloon, a ballistic mechanism or a catapult to position the one or more cables in draping engagement with a portion of the wind turbine. A climbing robot is positioned to ascend the one or more cables and perform a task related to inspecting for indications, repair of indications or upgrading the rotor blade. A slave robot system, disposed at the base location and anchored to the one or more cables, provides modulation of the cables for positioning of the climbing robot relative to the wind turbine as it ascends and descends the one or more cables. After completion of the task, the climbing robot descends the one or more cables and the cables are removed from the wind turbine.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Shiraj Sen, Todd William Danko, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Publication number: 20200158094
    Abstract: A method including positioning a modular robotic component proximate an area of interest on a surface of a wind turbine. The modular robotic component including a plurality of modules that perform a plurality of tasks. The method further including inspecting the area of interest with the modular robotic component for an indication requiring at least one of repair or upgrade and operating the modular robotic component to perform the plurality of tasks sequentially as the modular robotic component moves along the surface of the wind turbine. A modular robotic component and system including the modular robotic component are disclosed.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Todd William Danko, Shiraj Sen, John Robert Hoare, Charles Burton Theurer, Douglas Forman, Judith Ann Guzzo
  • Patent number: 10607406
    Abstract: A method for generating a three-dimensional model of an asset includes receiving input parameters corresponding to constraints of a mission plan for operating an unmanned vehicle around an asset, generating the mission plan based on the input parameters including information of a representative asset type, wherein the mission plan includes waypoints identifying locations and orientations of one or more image sensors of the unmanned vehicle, generating a flight path for the unmanned vehicle connecting the waypoints that satisfy one or more predefined criteria, monitoring a vehicle state of the unmanned vehicle during execution of the flight path from one waypoint to the next waypoint, determining, at each waypoint, a local geometry of the asset sensed by the one or more image sensors, changing the mission plan on-the-fly based on the local geometry, and capturing images of the asset along waypoints of the changed mission plan.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: March 31, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Shiraj Sen, Steven Robert Gray, Arpit Jain, Huan Tan, Douglas Forman, Judith Ann Guzzo
  • Publication number: 20190228573
    Abstract: A method for generating a three-dimensional model of an asset includes receiving input parameters corresponding to constraints of a mission plan for operating an unmanned vehicle around an asset, generating the mission plan based on the input parameters including information of a representative asset type, wherein the mission plan includes waypoints identifying locations and orientations of one or more image sensors of the unmanned vehicle, generating a flight path for the unmanned vehicle connecting the waypoints that satisfy one or more predefined criteria, monitoring a vehicle state of the unmanned vehicle during execution of the flight path from one waypoint to the next waypoint, determining, at each waypoint, a local geometry of the asset sensed by the one or more image sensors, changing the mission plan on-the-fly based on the local geometry, and capturing images of the asset along waypoints of the changed mission plan.
    Type: Application
    Filed: January 25, 2018
    Publication date: July 25, 2019
    Inventors: Shiraj SEN, Steven Robert GRAY, Arpit JAIN, Huan TAN, Douglas FORMAN, Judith Ann GUZZO
  • Patent number: 10168253
    Abstract: A system and method for monitoring a condition of a marine riser including at least one subsea sensing and acoustic platform mechanically coupled to a riser joint of the marine riser. The at least one platform includes one or more sensors mechanically coupled to the riser joint and including plug-and-play sensor interface technology. The platform further includes a microprocessor configured to receive and analyze sensor data from the one or more sensors and provide pre-processed data representative of a determination of a condition of the riser joint. A memory module is provided including one or more software modules executable by the microprocessor and configured to provide data storage. The platform further includes an acoustic modem configured to receive the pre-processed data, communicate the condition to a topside acoustic transceiver in real-time and provide remote command configuration in response to the condition. An included power module provides power to the platform components.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: January 1, 2019
    Assignee: General Electric Company
    Inventors: Shaopeng Liu, Judith Ann Guzzo, John William Carbone, Michael Joseph Dell'Anno, Li Zhang
  • Patent number: 9593568
    Abstract: In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual riser components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: March 14, 2017
    Assignee: General Electric Company
    Inventors: Jeffrey LeMonds, Judith Ann Guzzo, Shaopeng Liu, Uttara Ashwin Dani
  • Publication number: 20150346064
    Abstract: A system and method for monitoring a condition of a marine riser including at least one subsea sensing and acoustic platform mechanically coupled to a riser joint of the marine riser. The at least one platform includes one or more sensors mechanically coupled to the riser joint and including plug-and-play sensor interface technology. The platform further includes a microprocessor configured to receive and analyze sensor data from the one or more sensors and provide pre-processed data representative of a determination of a condition of the riser joint. A memory module is provided including one or more software modules executable by the microprocessor and configured to provide data storage. The platform further includes an acoustic modem configured to receive the pre-processed data, communicate the condition to a topside acoustic transceiver in real-time and provide remote command configuration in response to the condition. An included power module provides power to the platform components.
    Type: Application
    Filed: December 16, 2014
    Publication date: December 3, 2015
    Inventors: Shaopeng Liu, Judith Ann Guzzo, John William Carbone, Michael Joseph Dell'Anno, Li Zhang
  • Patent number: 9051785
    Abstract: Apparatus and methods for tracking a plurality of marine riser assets are provided. Part of a riser lifecycle monitoring system, the apparatus can include an oil and gas riser spider to connect a plurality of riser pipe sections during assembly of a riser pipe string. The riser spider forms an annulus around a first section of the plurality of riser pipe sections and supports the first section of the plurality of riser pipe sections during connection to a second section. The apparatus can also include a reader including an antenna arrangement to read a plurality of radio frequency identification tags, e.g., directional 125 kHz RFD tags, attached to or embedded within an outer surface portion of each of the plurality of riser pipe sections.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: June 9, 2015
    Assignee: Vetco Gray Inc.
    Inventors: Patricia Mackenzie, Judith Ann Guzzo, Lynn Ann DeRose, Brandon Stephen Good
  • Publication number: 20150142315
    Abstract: In accordance with one aspect of the present technique, a method is disclosed. The method includes receiving sensor data from a first set of sensors mechanically coupled to a first riser joint of a marine riser. The method also includes analyzing the sensor data to determine a condition of the first riser joint and determining whether the condition satisfies a transmission criterion. The method further includes sending a notification including the condition to an on-vessel monitor communicatively coupled to the marine riser in response to determining that the condition satisfies the transmission criterion.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 21, 2015
    Applicant: General Electric Company
    Inventors: Judith Ann Guzzo, John William Carbone, Li Zhang, Shaopeng Liu
  • Publication number: 20140167972
    Abstract: A sensing and data acquisition system may provide a sensing assembly including a signal conditioner to receive an electrical signal from a sensor affixed onto an asset and supply an encoded digital representation of a sensed parameter. An acoustic modem may be connected to the signal conditioner to receive the encoded digital representation of the sensed parameter and transmit an acoustic signal based on the encoded digital representation of the sensed parameter. A data acquisition line may be proximate to the asset and may be non-contactively coupled to the sensing assembly. The data acquisition line may include an optical fiber acoustically coupled to the acoustic modem and responsive to the encoded digital representation of the sensed parameter transmitted by the modem to effect an optical change in an acoustically-responsive portion of the fiber. The optical change may be measurable to detect the encoded digital representation of the sensed asset parameter.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Glen Peter Koste, Judith Ann Guzzo, Thomas Allen Fraser
  • Publication number: 20140060851
    Abstract: Apparatus and methods for tracking a plurality of marine riser assets are provided. Part of a riser lifecycle monitoring system, the apparatus can include an oil and gas riser spider to connect a plurality of riser pipe sections during assembly of a riser pipe string. The riser spider forms an annulus around a first section of the plurality of riser pipe sections and supports the first section of the plurality of riser pipe sections during connection to a second section. The apparatus can also include a reader including an antenna arrangement to read a plurality of radio frequency identification tags, e.g., directional 125 kHz RFD tags, attached to or embedded within an outer surface portion of each of the plurality of riser pipe sections.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 6, 2014
    Applicant: VETCO GRAY INC.
    Inventors: Patricia Mackenzie, Judith Ann Guzzo, Lynn Ann DeRose, Brandon Stephen Good
  • Patent number: 8464946
    Abstract: An apparatus and methods for tracking a plurality of marine riser assets is provided. Part of a riser lifecycle monitoring system, the apparatus can include an oil and gas riser spider to connect a plurality of riser pipe sections during assembly of a riser pipe string. The riser spider forms an annulus around a first section of the plurality of riser pipe sections and supports the first section of the plurality of riser pipe sections during connection to a second section. The apparatus can also include an antenna to read a plurality of radio frequency identification tags, e.g., directional 125 kHz RFID tags, attached to outsides of the plurality of riser pipe sections. The antenna can include an oblong loop attached to and substantially spanning about half of an internal surface of the riser spider so that the antenna follows the contour of the riser spider.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 18, 2013
    Assignee: Vetco Gray Inc.
    Inventors: Patricia Mackenzie, Judith Ann Guzzo, Lynn Ann DeRose, Brandon Stephen Good