Patents by Inventor Juergen Dold

Juergen Dold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314616
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: May 24, 2023
    Publication date: October 5, 2023
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Publication number: 20230305157
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 28, 2023
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Publication number: 20230305158
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 28, 2023
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Publication number: 20230296778
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Publication number: 20230296779
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Publication number: 20230296777
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Patent number: 11703058
    Abstract: The invention relates to a method for producing a drive unit device, in particular a fan device, which has at least one first modular unit (12) and at least one second modular unit (16), which concentrically accommodates at least a portion of the first modular unit (12), with the first and second modular units (12, 16) being intended to contribute mechanically to a change in torque, and the first modular unit (12) being secured in the second modular unit (16) in at least one method step (100, 110). To increase safety and reduce process costs, it is proposed that the first modular unit (12) be secured in the second modular unit (16) by means of at least one concentric pressing process step.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 18, 2023
    Assignee: ebm-papst St. Georgen GmbH & Co. KG
    Inventors: Juergen Dold, Julian Wege
  • Patent number: 11703597
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: July 18, 2023
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Simon Mark, Klaus Bereuter, Benjamin Müller, Roman Steffen, Burkhard Böckem, Jürgen Dold, Jochen Scheja, Lukas Heinzle, Charles Leopold Elisabeth Dumoulin
  • Publication number: 20230042369
    Abstract: The present invention relates to three-dimensional reality capturing of an environment, wherein data of various kinds of measurement devices are fused to generate a three-dimensional model of the environment. In particular, the invention relates to a computer-implemented method for registration and visualization of a 3D model provided by various types of reality capture devices and/or by various surveying tasks.
    Type: Application
    Filed: December 30, 2019
    Publication date: February 9, 2023
    Applicants: LEICA GEOSYSTEMS AG, HEXAGON GEOSYSTEMS SERVICES AG, LUCIAD NV
    Inventors: Burkhard BÖCKEM, Jürgen DOLD, Pascal STRUPLER, Joris SCHOUTEDEN, Daniel BALOG
  • Publication number: 20220373685
    Abstract: A reality capture device for generating a digital three-dimensional representation of an environment enables an object within an infrastructure to be surveyed or detected. The reality capture device is compact and easy to use, allowing for fast and reliable capture. The reality capture device can be carried and moved by a mobile carrier, particularly a person, robot or vehicle, and can be moved during a measuring process for generating a digital representation of an environment. The mobile reality capture device includes a localization unit for providing a simultaneous localization and mapping functionality, a laser scanner, and a camera unit. The mobile reality capture device is configured to be carried by a user through the room. The room is surveyed during the movement of the mobile reality capture device. The data from the laser scanner and the camera unit are referenced to each other by means of the localization unit.
    Type: Application
    Filed: June 7, 2019
    Publication date: November 24, 2022
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Jürgen DOLD, Burkhard BÖCKEM, Roman STEFFEN, Lukas HEINZLE, Ralph Patrick HARTI, Hendrik DESCHOUT, Roland GRAF, Mattheus Henricus Maria MICHELS, Michael DIETSCHI, Adam BAIJRIC, Andrea BONFANTI, Kristian Walker MORIN, Simon MARK, Klaus BEREUTER, Markus RIBI, Michele PORTENTOSO, Matthias WIESER
  • Patent number: 11493599
    Abstract: A surveillance system for detecting an object within a monitored infrastructure and to a hybrid 3D surveying device, wherein a LiDAR device is configured that scanning is carried out with respect to two essentially orthogonal axes and wherein the LiDAR device comprises a cover mounted on the base, such that the base and the cover form an enclosure that encloses all moving parts of the LiDAR device, wherein the cover is configured to be opaque for visible light and translucent for the wavelength range of the LiDAR transmission radiation. The system further comprises a computing unit configured for processing the LiDAR measurement data to generate a 3D point cloud of the monitored infrastructure, and an object detector configured for classification of the object based on the 3D point cloud.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: November 8, 2022
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Burkhard Böckem, Jürgen Dold, Klaus Bereuter, Simon Mark, Matthias Wieser
  • Publication number: 20200340484
    Abstract: The invention relates to a method for producing a drive unit device, in particular a fan device, which has at least one first modular unit (12) and at least one second modular unit (16), which concentrically accommodates at least a portion of the first modular unit (12), with the first and second modular units (12, 16) being intended to contribute mechanically to a change in torque, and the first modular unit (12) being secured in the second modular unit (16) in at least one method step (100, 110). To increase safety and reduce process costs, it is proposed that the first modular unit (12) be secured in the second modular unit (16) by means of at least one concentric pressing process step.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 29, 2020
    Inventors: Juergen DOLD, Julian WEGE
  • Publication number: 20200209394
    Abstract: A laser scanner and a system with a laser scanner for measuring an environment. The laser scanner includes an optical distance measuring device, a support, a beam steering unit rotatably fixed to the support which rotates around a beam axis of rotation. The beam steering unit includes a mirrored surface which deflects radiation used in the optical distance measurement and an angle encoder for recording angle data. The optical distance measurement is performed by a progressive rotation of the beam steering unit about the beam axis of rotation and the continuous emission of a distance measurement radiation, the emission being made through an outlet area arranged in the direction of the mirrored surface on the support, the receiving optics for receiving radiation are arranged on the support, and wherein the outlet area has a lateral offset with respect to the optical axis of the receiving optics.
    Type: Application
    Filed: November 10, 2016
    Publication date: July 2, 2020
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Simon MARK, Klaus BEREUTER, Benjamin MÜLLER, Roman STEFFEN, Burkhard BÖCKEM, Jürgen DOLD, Jochen SCHEJA, Lukas HEINZLE, Charles Leopold Elisabeth DUMOULIN
  • Publication number: 20200200872
    Abstract: A surveillance system for detecting an object within a monitored infrastructure and to a hybrid 3D surveying device, wherein a LiDAR device is configured that scanning is carried out with respect to two essentially orthogonal axes and wherein the LiDAR device comprises a cover mounted on the base, such that the base and the cover form an enclosure that encloses all moving parts of the LiDAR device, wherein the cover is configured to be opaque for visible light and translucent for the wavelength range of the LiDAR transmission radiation. The system further comprises a computing unit configured for processing the LiDAR measurement data to generate a 3D point cloud of the monitored infrastructure, and an object detector configured for classification of the object based on the 3D point cloud.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 25, 2020
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Burkhard BÖCKEM, Jürgen DOLD, Klaus BEREUTER, Simon MARK, Matthias WIESER
  • Patent number: 10640209
    Abstract: A flying sensor comprising an unmanned aerial vehicle (UAV) and at least one profiler mounted on the UAV, the profiler comprising a base, a scanning unit for providing (LiDAR) data, the scanning unit mounted on the base and comprising a shaft carrying a deflector and being mounted in the scanning unit and rotatable, a transmitter transmitting a transmission beam, a first receiver configured for receiving a first reception beam reflected from the setting via the deflector, and an electric port configured for connecting the profiler to the UAV, and comprising a data interface and a power interface, and wherein the UAV comprises a visual sensor providing visual data, and comprising one or more cameras, a pose sensor for providing pose data, and a computer to compute a 3D point cloud based on the LiDar data and a Simultaneous Localisation and Mapping (SLAM) algorithm using the visual and pose data.
    Type: Grant
    Filed: October 8, 2017
    Date of Patent: May 5, 2020
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Burkhard Böckem, Jürgen Dold, Simon Mark
  • Patent number: 10520310
    Abstract: Some embodiments include a surface surveying device, in particular profiler or 3D scanner, for determining a multiplicity of 3D coordinates of measurement points on a surface, comprising a scanning unit and means for determining a position and orientation of the scanning unit, a carrier for carrying the scanning unit and at least part of the means for determining a position and orientation, and a control and evaluation unit with a surface surveying functionality. The carrier is embodied as an unmanned aerial vehicle which is capable of hovering and comprises a lead, the latter being connected at one end thereof to the aerial vehicle and able to be held at the other end by a user, wherein the lead is provided for guiding the aerial vehicle in the air by the user and the position of the aerial vehicle in the air is predetermined by the effective length of the lead.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: December 31, 2019
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Jürgen Dold, Thomas Harring, Burkhard Böckem
  • Publication number: 20180099744
    Abstract: A flying sensor comprising an unmanned aerial vehicle (UAV) and at least one profiler mounted on the UAV, the profiler comprising a base, a scanning unit for providing (LiDAR) data, the scanning unit mounted on the base and comprising a shaft carrying a deflector and being mounted in the scanning unit and rotatable, a transmitter transmitting a transmission beam, a first receiver configured for receiving a first reception beam reflected from the setting via the deflector, and an electric port configured for connecting the profiler to the UAV, and comprising a data interface and a power interface, and wherein the UAV comprises a visual sensor providing visual data, and comprising one or more cameras, a pose sensor for providing pose data, and a computer to compute a 3D point cloud based on the LiDar data and a Simultaneous Localisation and Mapping (SLAM) algorithm using the visual and pose data.
    Type: Application
    Filed: October 8, 2017
    Publication date: April 12, 2018
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Burkhard BÖCKEM, Jürgen DOLD, Simon MARK
  • Publication number: 20170122736
    Abstract: Some embodiments include a surface surveying device, in particular profiler or 3D scanner, for determining a multiplicity of 3D coordinates of measurement points on a surface, comprising a scanning unit and means for determining a position and orientation of the scanning unit, a carrier for carrying the scanning unit and at least part of the means for determining a position and orientation, and a control and evaluation unit with a surface surveying functionality. The carrier is embodied as an unmanned aerial vehicle which is capable of hovering and comprises a lead, the latter being connected at one end thereof to the aerial vehicle and able to be held at the other end by a user, wherein the lead is provided for guiding the aerial vehicle in the air by the user and the position of the aerial vehicle in the air is predetermined by the effective length of the lead.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 4, 2017
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Jürgen DOLD, Thomas HARRING, Burkhard BÖCKEM
  • Patent number: 8459450
    Abstract: A formula bottle includes two separate sealed chambers, a liquid chamber and a formula chamber. A first seal seals the two chambers from one another and a second seal seals the formula chamber from the nipple on the formula bottle. Rotation of the liquid chamber counterclockwise opens the seal between it and the formula chamber, allowing the formula powder and the liquid to mix. Shaking of the bottle causes the two components to mix completely. In order for the mixed formula to be dispensed to a feeding infant, a bottle collar, which secures the nipple to the formula bottle, is rotated counterclockwise to open the second seal to allow an infant to feed.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 11, 2013
    Inventors: Kevin Whitaker, Juergen Dold
  • Publication number: 20120120391
    Abstract: A measuring system includes a laser tracker (10), a target point marked by a reflector (12), a surveying apparatus (13), and an arithmetic and control unit (14). The laser tracker emits a measuring beam (M) which is reflected by the reflector, a process that is used for determining the distance between the laser tracker (10) and the reflector (12). The surveying apparatus has a known position and orientation relative to the measuring beam (M) while preferably being embodied as a survey camera. The inventive measuring system is designed so as to track the reflector (12) via the measuring beam (M). In a normal tracking mode (A), a measured value for controlling the orientation of the measuring beam (M) is derived from the detection of the measuring beam reflected by the reflector (12).
    Type: Application
    Filed: January 24, 2012
    Publication date: May 17, 2012
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Jürgen Dold, Daniel Moser, Roland Zumbrunn