Patents by Inventor Juha O. MERIMAA

Juha O. MERIMAA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098004
    Abstract: A first layer of data having a first set of Ambisonic audio components can be decoded where the first set of Ambisonic audio components is generated based on ambience and one or more object-based audio signals. A second layer of data is decoded having at least one of the one or more object-based audio signals. One of the object-based audio signals is subtracted from the first set of Ambisonic audio components. The resulting Ambisonic audio components are rendered to generate a first set of audio channels. The one or more object-based audio signals are spatially rendered to generate a second set of audio channels. Other aspects are described and claimed.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Dipanjan Sen, Frank Baumgarte, Juha O. Merimaa
  • Publication number: 20200409995
    Abstract: A device with microphones can generate microphone signals during an audio recording. The device can store, in an electronic audio data file, the microphone signals, and metadata that includes impulse responses of the microphones. Other aspects are described and claimed.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 31, 2020
    Inventors: Jonathan D. Sheaffer, Symeon Delikaris Manias, Gaetan R. Lorho, Peter A. Raffensperger, Eric A. Allamanche, Frank Baumgarte, Dipanjan Sen, Joshua D. Atkins, Juha O. Merimaa
  • Patent number: 10798511
    Abstract: Processing input audio channels for generating spatial audio can include receiving a plurality of microphone signals that capture a sound field. Each microphone signal can be transformed into a frequency domain signal. From each frequency domain signal, a direct component and a diffuse component can be extracted. The direct component can be processed with a parametric renderer. The diffuse component can be processed with a linear renderer. The components can be combined, resulting in a spatial audio output. The levels of the components can be adjusted to match a direct to diffuse ratio (DDR) of the output with the DDR of the captured sound field. Other aspects are also described and claimed.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 6, 2020
    Assignee: APPLE INC.
    Inventors: Jonathan D. Sheaffer, Juha O. Merimaa, Jason Wung, Martin E. Johnson, Peter A. Raffensperger, Joshua D. Atkins, Symeon Delikaris Manias, Mehrez Souden
  • Publication number: 20200260211
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Publication number: 20200236489
    Abstract: Methods and apparatus for predictive head-tracked binaural audio rendering in which a rendering device renders multiple audio streams for different possible head locations based on head tracking data received from a headset, for example audio streams for the last known location and one or more predicted or possible locations, and transmits the multiple audio streams to the headset. The headset then selects and plays one of the audio streams that is closest to the actual head location based on current head tracking data. If none of the audio streams closely match the actual head location, two closest audio streams may be mixed. Transmitting multiple audio streams to the headset and selecting or mixing an audio stream on the headset may mitigate or eliminate perceived head tracking latency.
    Type: Application
    Filed: September 25, 2018
    Publication date: July 23, 2020
    Applicant: Apple Inc.
    Inventors: Juha O. Merimaa, Christopher T. Eubank, Martin E. Johnson, Stuart J. Wood, Deepak Natarajan
  • Patent number: 10674308
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 2, 2020
    Assignee: Apple Inc.
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Patent number: 10524080
    Abstract: An audio processing system has one or more processors that process an audio signal on three paths. The first path has a direct gain and a direct virtual source algorithm operating on the audio signal. The second path has a plurality of early reflection gains operating on the audio signal. Operation with the early reflection gains produces a plurality of early reflections. Each of the early reflection signals may be subjected to a delay and may be processed according to an early reflections virtual source algorithm. The third path has a reverb gain and binaural reverb filters operating on the audio signal. The third path also has a crosstalk canceler. A mixer combines left and right channel outputs of each of the first path, second path and third path. The mixer produces a left loudspeaker signal and a right loudspeaker signal.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 31, 2019
    Assignee: APPLE INC.
    Inventors: Martin E. Johnson, Darius A. Satongar, Stuart J. Wood, Lance F. Reichert, Juha O. Merimaa, Joshua D. Atkins
  • Publication number: 20190253827
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Patent number: 10278003
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Patent number: 10028071
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the orientation data to determine whether the head-mounted device has moved over an angle within a range of movement, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the range of movement. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: July 17, 2018
    Assignee: Apple Inc.
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Publication number: 20180090150
    Abstract: Ambience extraction from a multichannel input signal is provided. The multichannel input signal is converted into a time-frequency representation. A cross-correlation coefficient is computed for each time and frequency in the time-frequency representation of the multichannel input signal. An autocorrelation is computed for each time and frequency in the time-frequency representation of the multichannel input signal. Using the cross-correlation coefficient and the autocorrelation, ambience extraction coefficients including crosstalk and same-side coefficients are computed as a function of a tuning parameter, the crosstalk coefficients being proportional to the tuning parameter and the tuning parameter being between a value of 0 and a value of 1. The ambience extraction coefficients are applied to extract a left ambience component and a right ambience component.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: Juha O. Merimaa, Bruce C. Po, Adam E. Kriegel
  • Publication number: 20180091922
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 21, 2017
    Publication date: March 29, 2018
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Publication number: 20180091923
    Abstract: A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the orientation data to determine whether the head-mounted device has moved over an angle within a range of movement, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the range of movement. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 21, 2017
    Publication date: March 29, 2018
    Inventors: Darius A. Satongar, Afrooz Family, Sylvain J. Choisel, Juha O. Merimaa
  • Patent number: 9928842
    Abstract: Ambience extraction from a multichannel input signal is provided. The multichannel input signal is converted into a time-frequency representation. A cross-correlation coefficient is computed for each time and frequency in the time-frequency representation of the multichannel input signal. An autocorrelation is computed for each time and frequency in the time-frequency representation of the multichannel input signal. Using the cross-correlation coefficient and the autocorrelation, ambience extraction coefficients including crosstalk and same-side coefficients are computed as a function of a tuning parameter, the crosstalk coefficients being proportional to the tuning parameter and the tuning parameter being between a value of 0 and a value of 1. The ambience extraction coefficients are applied to extract a left ambience component and a right ambience component.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 27, 2018
    Assignee: APPLE INC.
    Inventors: Juha O. Merimaa, Bruce C. Po, Adam E. Kriegel
  • Patent number: 9917562
    Abstract: Automatic gain control systems disclosed herein can incorporate a confidence metric that can estimate the accuracy of gain adjustments calculated by an automatic gain control module. The confidence metric may be based on a percentage of valid audio samples in a given period of time. Based on the confidence metric, the AGC response may be reduced, delayed, frozen, or otherwise altered from the baseline gain adjustment. Time-averaging process may be used to estimate the input signal power level and determine an appropriate baseline gain adjustment. Additionally, weighting functions can be adjusted to prevent overestimation of the signal power.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: March 13, 2018
    Assignee: Apple Inc.
    Inventors: Arvindh Krishnaswamy, Juha O. Merimaa, Kapil Krishnamurthy, Yuchao Song
  • Publication number: 20160294343
    Abstract: Automatic gain control systems disclosed herein can incorporate a confidence metric that can estimate the accuracy of gain adjustments calculated by an automatic gain control module. The confidence metric may be based on a percentage of valid audio samples in a given period of time. Based on the confidence metric, the AGC response may be reduced, delayed, frozen, or otherwise altered from the baseline gain adjustment. Time-averaging process may be used to estimate the input signal power level and determine an appropriate baseline gain adjustment. Additionally, weighting functions can be adjusted to prevent overestimation of the signal power.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: Arvindh Krishnaswamy, Juha O. Merimaa, Kapil Krishnamurthy, Yuchao Song
  • Patent number: 9432787
    Abstract: Systems and methods for determining the operating condition of multiple microphones of an electronic device are disclosed. A system can include a plurality of microphones operative to receive signals, a microphone condition detector, and a plurality of microphone condition determination sources. The microphone condition detector can determine a condition for each of the plurality of microphones by using the received signals and accessing at least one microphone condition determination source.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: August 30, 2016
    Assignee: Apple Inc.
    Inventors: Arvindh Krishnaswamy, David T. Yeh, Juha O. Merimaa, Sean A. Ramprashad
  • Publication number: 20160219386
    Abstract: Systems and methods for determining the operating condition of multiple microphones of an electronic device are disclosed. A system can include a plurality of microphones operative to receive signals, a microphone condition detector, and a plurality of microphone condition determination sources. The microphone condition detector can determine a condition for each of the plurality of microphones by using the received signals and accessing at least one microphone condition determination source.
    Type: Application
    Filed: February 9, 2016
    Publication date: July 28, 2016
    Inventors: Arvindh Krishnaswamy, David T. Yeh, Juha O. Merimaa, Sean A. Ramprashad
  • Patent number: 9401685
    Abstract: Automatic gain control systems disclosed herein can incorporate a confidence metric that can estimate the accuracy of gain adjustments calculated by an automatic gain control module. The confidence metric may be based on a percentage of valid audio samples in a given period of time. Based on the confidence metric, the AGC response may be reduced, delayed, frozen, or otherwise altered from the baseline gain adjustment. Time-averaging process may be used to estimate the input signal power level and determine an appropriate baseline gain adjustment. Additionally, weighting functions can be adjusted to prevent overestimation of the signal power.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 26, 2016
    Assignee: Apple Inc.
    Inventors: Arvindh Krishnaswamy, Juha O. Merimaa, Kapil Krishnamurthy, Yuchao Song
  • Patent number: 9301073
    Abstract: Systems and methods for determining the operating condition of multiple microphones of an electronic device are disclosed. A system can include a plurality of microphones operative to receive signals, a microphone condition detector, and a plurality of microphone condition determination sources. The microphone condition detector can determine a condition for each of the plurality of microphones by using the received signals and accessing at least one microphone condition determination source.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 29, 2016
    Assignee: Apple Inc.
    Inventors: Arvindh Krishnaswamy, David T. Yeh, Juha O. Merimaa, Sean A. Ramprashad