Patents by Inventor Juha T. Rantala

Juha T. Rantala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7473650
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 6, 2009
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, T. Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L. T. Maaninen
  • Publication number: 20080206578
    Abstract: Thin films are disclosed that are suitable as thin films in IC's and for other similar applications. In particular, the invention concerns thin films comprising compositions obtainable by hydrolysis of two or more silicon compounds, which yield an at least partially cross-linked siloxane structure. The invention also concerns a method for producing such films by preparing siloxane compositions by hydrolysis of suitable reactants, by applying the hydrolyzed compositions on a substrate in the form of a thin layer and by curing the layer to form a high silicon content film.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Inventors: Juha T. Rantala, Thomas Gadda, Jyri Paulasaari
  • Publication number: 20070284687
    Abstract: A semiconductor device comprising a semiconductor substrate with a plurality of photo-diodes arranged in the semiconductor substrate with interconnect layers defining apertures at the photo-diodes and a first polymer which fills the gaps such as to cover the photo-diode. Further, layers of color filters are arranged on top the gap filling polymer layer opposite to the photo-diodes and a second polymer arranged on the interconnect layers covers and planarizes and passivates the color filter layers. On top of the planarizing polymer there is a plurality of micro-lenses opposite to the color filters, and a third polymer layer is deposited on the micro-lenses for passivating the micro-lenses. According to the invention the polymer materials are comprised of a siloxane polymer which gives thermally and mechanically stable, high index of refraction, dense dielectric films exhibiting high-cracking threshold, low pore volume and pore size.
    Type: Application
    Filed: December 13, 2006
    Publication date: December 13, 2007
    Inventor: Juha T. Rantala
  • Patent number: 7280731
    Abstract: Waveguides having high stability are disclosed (and other devices and materials including but not limited to coatings, passivation materials, glob top materials, underfill materials, materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by being formed of a novel hybrid organic-inorganic material. In one embodiment of the invention, a method for making a waveguide includes: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a stable material with a relatively high glass transition temperature. Preferably the material is one that does not degrade or otherwise physically and/or chemically change upon further processing or when in use. Preferably the stable waveguide material of the invention can be heated in supercritical water vapor at 2 atm and at 120 C.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: October 9, 2007
    Assignee: Silecs Oy
    Inventor: Juha T. Rantala
  • Patent number: 7144827
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: December 5, 2006
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, T Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L. T. Maaninen
  • Patent number: 7060634
    Abstract: An integrated circuit is provided comprising a substrate and discrete areas of electrically insulating and electrically conductive material, wherein the electrically insulating material is a hybrid organic-inorganic material that has a density of 1.45 g/cm3 or more and a dielectric constant of 3.0 or less. The integrated circuit can be made by a method comprising: providing a substrate; forming discrete areas of electrically insulating and electrically conductive material on the substrate; wherein the electrically insulating material is deposited on the substrate followed by heating at a temperature of 350° C. or less; and wherein the electrically insulating material is a hybrid organic-inorganic material that has a density of 1.45 g/cm3 or more after densification. Also disclosed is a method for making an integrated circuit comprising performing a dual damascene method with an electrically conductive material and a dielectric, the dielectric being a directly photopatterned hybrid organic-inorganic material.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: June 13, 2006
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, Nungavram S. Viswanathan, T. Teemu T. Tormanen
  • Patent number: 7062145
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hydrophobic coatings, passivation materials, glob top materials, underfill materials, dielectric materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by a high hydrophobicity and high stability and, among other things. In one embodiment of the invention, a method for making a waveguide comprises: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer is hydrophobic and results, if exposed to water, in a water contact angle of 90 degrees or more.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 13, 2006
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 6974970
    Abstract: Thin films are disclosed that are suitable as dielectrics in IC's and for other similar applications. In particular, the invention concerns thin films comprising compositions obtainable by hydrolysis of two or more silicon compounds, which yield an at least partially cross-linked siloxane structure. The invention also concerns a method for producing such films by preparing siloxane compositions by hydrolysis of suitable reactants, by applying the hydrolyzed compositions on a substrate in the form of a thin layer and by curing the layer to form a film. In one example, a thin film comprising a composition is obtained by hydrolyzing a monomeric silicon compound having at least one hydrocarbyl radical, containing an unsaturated carbon-to-carbon bond, and at least one hydrolyzable group attached to the silicon atom of the compound with another monomeric silicon compound having at least one aryl group and at least one hydrolyzable group attached to the silicon atom of the compound to form a siloxane material.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: December 13, 2005
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, Nungavram S. Viswanathan, T. Teemu T. Tormanen
  • Patent number: 6924384
    Abstract: A compound of the general formula R1R2MR4R5 is disclosed wherein R1 and R2 are independently an aryl, alkyl, alkenyl, epoxy or alkynyl group, wherein at least one of R1 and R2 is fully or partially fluorinated, wherein M is selected from group 14 of the periodic table, wherein R4 and R5 are independently an alkoxy group, OR3, or a halogen group, X, except where M is Si, R4 and R5 are both ethoxy groups or both chlorine groups, and R1 and R2 are perfluorinated groups. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed, alone or with one or more similar compounds, to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components. Methods for making compounds of the general formula R1MR4R5R6 are also disclosed.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: August 2, 2005
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 6803476
    Abstract: A method comprises reacting a compound of the general formula R14−mMOR3m wherein m is an integer from 2 to 4, OR3 is an alkoxy group, and M is an element selected from group 14 of the periodic table; with a compound of the general formula R2X2+Mg, wherein X2 is Br or I; where R1 and R2 are independently selected from alkyl, alkenyl, aryl, alkynyl, or epoxy, and wherein at least one of R1 and R2 is partially or fully fluorinated; so as to make a compound of the general formula R2R14−mMOR3m−1; followed by reacting R2R14−mMOR3m−1 with a halogen or halogen compound in order to replace one or more OR3 groups with a halogen group so as to form R2R14−mMOR3m−1−nXn, where X is a halogen and n is from 1 to 3 and m<n—except where R1 is fluorinated phenyl, M is Si and OR3 is ethoxy.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: October 12, 2004
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20040188713
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Application
    Filed: January 17, 2003
    Publication date: September 30, 2004
    Inventors: Juha T. Rantala, Jason S. Reid, T. Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L.T. Maaninen
  • Publication number: 20040115341
    Abstract: An adhesion promoter for adhering a coating of a polymer, metal, metal oxide or fluorinated derivative thereof to an electrical or opto-electronic surface. The adhesion promoter is a hybrid organic-inorganic material which, in a preferred embodiment, includes silicon in the inorganic material.
    Type: Application
    Filed: June 30, 2003
    Publication date: June 17, 2004
    Inventors: Juha T. Rantala, Nungavaram S. Viswanathan, Fang Tuurnala
  • Publication number: 20040012089
    Abstract: An integrated circuit is provided comprising a substrate and discrete areas of electrically insulating and electrically conductive material, wherein the electrically insulating material is a hybrid organic-inorganic material that has a density of 1.45 g/cm3 or more and a dielectric constant of 3.0 or less. The integrated circuit can be made by a method comprising: providing a substrate; forming discrete areas of electrically insulating and electrically conductive material on the substrate; wherein the electrically insulating material is deposited on the substrate followed by heating at a temperature of 350° C. or less; and wherein the electrically insulating material is a hybrid organic-inorganic material that has a density of 1.45 g/cm3 or more after densification.
    Type: Application
    Filed: January 17, 2003
    Publication date: January 22, 2004
    Inventors: Juha T. Rantala, Jason S. Reid, Nungavram S. Viswanathan, T. Teemu T. Tormanen
  • Publication number: 20040008960
    Abstract: Waveguides having high stability are disclosed (and other devices and materials including but not limited to coatings, passivation materials, glob top materials, underfill materials, materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by being formed of a novel hybrid organic-inorganic material. In one embodiment of the invention, a method for making a waveguide includes: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a stable material with a relatively high glass transition temperature. Preferably the material is one that does not degrade or otherwise physically and/or chemically change upon further processing or when in use.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 15, 2004
    Inventor: Juha T. Rantala
  • Publication number: 20040005131
    Abstract: Waveguides and other devices and materials (including but not limited to waveguides, microlenses, and other optical device components), both planer and freespace devices benefit by having a high transparency or low optical loss profile at particular wavelengths. A method for making a waveguide comprises forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer, and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a material having an optical loss of 0.1 dB/cm or less at 1550 nm, 1310 nm, C Band and/or L Band. The material having low optical loss also has other desirable properties in the areas of ease and temperature of deposition, hydrophobicity, direct patternability (photosensitivity), stress, aspect ratio if patterned, and surface and sidewall roughness (if patterned), among other characteristics.
    Type: Application
    Filed: May 17, 2002
    Publication date: January 8, 2004
    Inventors: Juha T. Rantala, Arto L.T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20040002617
    Abstract: A method for making an integrated circuit is disclosed comprising depositing alternating regions of electrically conductive material and hybrid organic inorganic dielectric material on a substrate, wherein an area of dielectric material is formed by hydrolyzing a plurality of precursors to form a hybrid organic inorganic material comprised of a silicon oxide backbone and having an organic substituent bound to the backbone, and depositing the hybrid organic inorganic material on a substrate, removing the hybrid organic-inorganic material in selected areas, and depositing an electrically conductive material in the selected areas, wherein one of the precursors is a compound of the general formula R1R2R3SiR4, wherein R1, R2, R3 are each bound to the Si and are independently an aryl group, a cross linkable group, or an alkyl group having from 1-14 carbons, and wherein R4 is selected from the group consisting of an alkoxy group, an acyloxy group, an —OH group or a halogen.
    Type: Application
    Filed: January 17, 2003
    Publication date: January 1, 2004
    Inventors: Juha T. Rantala, Jason S. Reid, T. Teemu T. Tormanen, Nungavram Viswanathan
  • Publication number: 20030235933
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hybrid organic-inorganic coatings, passivation materials, glob top materials, underfill materials, materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by being formed of a novel hybrid organic-inorganic material. In one embodiment of the invention, a method for making a waveguide includes: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a hybrid organic-inorganic material—that has many desirable properties relating to stability, hydrophobicity, roughness, optical absorbance, polarization dependent loss, among others.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 25, 2003
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030231851
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hydrophobic coatings, passivation materials, glob top materials, underfill materials, dielectric materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by a high hydrophobicity and high stability and, among other things. In one embodiment of the invention, a method for making a waveguide comprises: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer is hydrophobic and results, if exposed to water, in a water contact angle of 90 degrees or more.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 18, 2003
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030186494
    Abstract: Thin films are disclosed that are suitable as dielectrics in IC's and for other similar applications. In particular, the invention concerns thin films comprising compositions obtainable by hydrolysis of two or more silicon compounds, which yield an at least partially cross-linked siloxane structure. The invention also concerns a method for producing such films by preparing siloxane compositions by hydrolysis of suitable reactants, by applying the hydrolyzed compositions on a substrate in the form of a thin layer and by curing the layer to form a film. In one example, a thin film comprising a composition is obtained by hydrolyzing a monomeric silicon compound having at least one hydrocarbyl radical, containing an unsaturated carbon-to-carbon bond, and at least one hydrolyzable group attached to the silicon atom of the compound with another monomeric silicon compound having at least one aryl group and at least one hydrolyzable group attached to the silicon atom of the compound to form a siloxane material.
    Type: Application
    Filed: January 17, 2003
    Publication date: October 2, 2003
    Inventors: Juha T. Rantala, Jason S. Reid, Nungavram S. Viswanathan, T. Teemu T. Tormanen
  • Publication number: 20030176718
    Abstract: A compound of the general formula: R1R2R4MR5, wherein R1, R2 and R4 are independently an aryl, alkyl, alkenyl or alkynyl group, wherein at least one of R1, R2 and R4 is fully or partially fluorinated, wherein M is selected from group 14 of the periodic table, and wherein R5 is either an alkoxy group, OR3, or a halogen group, X. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed with one or more similar compounds (preferably having one or two R groups bound to M), to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components. Methods for making and using compounds of the general formula R1R2R4MR5 are also disclosed.
    Type: Application
    Filed: January 8, 2002
    Publication date: September 18, 2003
    Inventors: Juha T. Rantala, Arto L.T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen