Patents by Inventor Jui-Chieh LIAO

Jui-Chieh LIAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9724005
    Abstract: A real-time multi-channel EEG signal processor based on an on-line recursive independent component analysis is provided. A whitening unit generates covariance matrix by computing covariance according to a received sampling signal. A covariance matrix generates a whitening matrix by a computation of an inverse square root matrix calculation unit. An ORICA calculation unit computes the sampling signal and the whitening matrix to obtain a post-whitening sampling signal. The post-whitening sampling signal and an unmixing matrix implement an independent component analysis computation to obtain an independent component data. An ORICA training unit implements training of the unmixing matrix according to the independent component data to generate a new unmixing matrix. The ORICA calculation unit may use the new unmixing matrix to implement an independent component analysis computation. Hardware complexity and power consumption can be reduced by sharing registers and arithmetic calculation units.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: August 8, 2017
    Assignee: National Chiao Tung University
    Inventors: Wai-Chi Fang, Wei-Yeh Shih, Jui-Chieh Liao, Kuan-Ju Huang, Chiu-Kuo Chen, Gert Cauwenberghs, Tzyy-Ping Jung
  • Publication number: 20150018704
    Abstract: A real-time multi-channel automatic eye blink artifact eliminator includes a receiving unit for receiving independent component data; a temporary storage unit for saving pieces of the independent component data to form a data segment; a detection unit for detecting an eye blink artifact in the data segment through a sample entropy algorithm to generate a sample entropy value corresponding to the data segment; and a processing unit for determining whether the data segment contains the eye blink artifact according to the sample entropy value to generate an output result, eliminating the eye blink artifact according to the output result and outputting processed independent component data. The receiving unit continuously receives a next piece of the independent component data and the temporary storage unit discards the oldest one and adds a new one to form a new data segment, thereby continuously performing the eye blink artifact elimination to each data segment.
    Type: Application
    Filed: December 6, 2013
    Publication date: January 15, 2015
    Applicant: National Chiao Tung University
    Inventors: Wai-Chi Fang, Jui-Chieh Liao, Wei-Yeh Shih, Kuan-Ju Huang, Chiu-Kuo Chen
  • Publication number: 20140350864
    Abstract: A real-time multi-channel EEG signal processor based on an on-line recursive independent component analysis is provided. A whitening unit generates covariance matrix by computing covariance according to a received sampling signal. A covariance matrix generates a whitening matrix by a computation of an inverse square root matrix calculation unit. An ORICA calculation unit computes the sampling signal and the whitening matrix to obtain a post-whitening sampling signal. The post-whitening sampling signal and an unmixing matrix implement an independent component analysis computation to obtain an independent component data. An ORICA training unit implements training of the unmixing matrix according to the independent component data to generate a new unmixing matrix. The ORICA calculation unit may use the new unmixing matrix to implement an independent component analysis computation. Hardware complexity and power consumption can be reduced by sharing registers and arithmetic calculation units.
    Type: Application
    Filed: November 29, 2013
    Publication date: November 27, 2014
    Applicant: National Chiao Tung University
    Inventors: Wai-Chi FANG, Wei-Yeh SHIH, Jui-Chieh LIAO, Kuan-Ju HUANG, Chiu-Kuo CHEN, Gert CAUWENBERGHS, Tzyy-Ping JUNG