Patents by Inventor Jui-Yu Pan

Jui-Yu Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230326522
    Abstract: Various embodiments of the present application are directed towards an integrated chip including a first conductive interconnect structure overlying a substrate. A first memory stack is disposed on the first conductive interconnect structure. A second conductive interconnect structure overlies the first memory stack. The second conductive interconnect structure is spaced laterally between opposing sidewalls of the first conductive interconnect structure. A third conductive interconnect structure is disposed on the first conductive interconnect structure. A top surface of the third conductive interconnect structure is vertically above the second conductive interconnect structure.
    Type: Application
    Filed: June 9, 2023
    Publication date: October 12, 2023
    Inventors: Chang-Chih Huang, Jui-Yu Pan, Kuo-Chyuan Tzeng
  • Patent number: 11715519
    Abstract: Various embodiments of the present application are directed towards a method for forming an integrated chip. The method includes forming a dielectric structure over a substrate. A first conductive wire is formed along the dielectric structure. The first conductive wire extends laterally along a first direction. A memory stack is formed on a top surface of the first conductive wire. A second conductive wire is formed over the memory stack. The second conductive wire extends laterally along a second direction orthogonal to the first direction. An upper conductive via is formed on the top surface of the first conductive wire. An upper surface of the upper conductive via is above the second conductive wire.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: August 1, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Chih Huang, Jui-Yu Pan, Kuo-Chyuan Tzeng
  • Publication number: 20230109273
    Abstract: Some embodiments relate to an integrated chip that includes a first source/drain region and a second source/drain region disposed in a substrate. A plane that is substantially perpendicular to an upper surface of the substrate traverses the first source/drain region and the second source/drain region. Agate electrode extends over a channel region in the substrate between the first source/drain region and the second source/drain region. The gate electrode is separated from the channel region by way of a charge trapping dielectric structure. The charge trapping dielectric structure includes a tunnel dielectric layer, a charge trapping dielectric layer over the tunnel dielectric layer, and a blocking dielectric layer over the charge trapping dielectric layer. The channel region has a channel width measured perpendicularly to the plane, and the tunnel dielectric layer has different thicknesses at different respective points along the channel width.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Patent number: 11532637
    Abstract: Some embodiments relate to an integrated chip that includes a first source/drain region and a second source/drain region disposed in a substrate. A plane that is substantially perpendicular to an upper surface of the substrate traverses the first source/drain region and the second source/drain region. Agate electrode extends over a channel region in the substrate between the first source/drain region and the second source/drain region. The gate electrode is separated from the channel region by way of a charge trapping dielectric structure. The charge trapping dielectric structure includes a tunnel dielectric layer, a charge trapping dielectric layer over the tunnel dielectric layer, and a blocking dielectric layer over the charge trapping dielectric layer. The channel region has a channel width measured perpendicularly to the plane, and the tunnel dielectric layer has different thicknesses at different respective points along the channel width.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Publication number: 20220115066
    Abstract: Various embodiments of the present application are directed towards a method for forming an integrated chip. The method includes forming a dielectric structure over a substrate. A first conductive wire is formed along the dielectric structure. The first conductive wire extends laterally along a first direction. A memory stack is formed on a top surface of the first conductive wire. A second conductive wire is formed over the memory stack. The second conductive wire extends laterally along a second direction orthogonal to the first direction. An upper conductive via is formed on the top surface of the first conductive wire. An upper surface of the upper conductive via is above the second conductive wire.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: Chang-Chih Huang, Jui-Yu Pan, Kuo-Chyuan Tzeng
  • Patent number: 11211120
    Abstract: Various embodiments of the present application are directed towards an integrated chip. The integrated chip includes an array overlying a substrate and including multiple memory stacks in a plurality of rows and a plurality of columns. Each of the memory stacks includes a data storage structure having a variable resistance. A plurality of word lines are disposed beneath the array and extend along corresponding rows of the array. The word lines are electrically coupled with memory stacks of the array in the corresponding rows. A plurality of upper conductive vias extend from above the array of memory stacks to contact top surfaces of corresponding word lines.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Chih Huang, Jui-Yu Pan, Kuo-Chyuan Tzeng
  • Publication number: 20210295912
    Abstract: Various embodiments of the present application are directed towards an integrated chip. The integrated chip includes an array overlying a substrate and including multiple memory stacks in a plurality of rows and a plurality of columns. Each of the memory stacks includes a data storage structure having a variable resistance. A plurality of word lines are disposed beneath the array and extend along corresponding rows of the array. The word lines are electrically coupled with memory stacks of the array in the corresponding rows. A plurality of upper conductive vias extend from above the array of memory stacks to contact top surfaces of corresponding word lines.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Inventors: Chang-Chih Huang, Jui-Yu Pan, Kuo-Chyuan Tzeng
  • Publication number: 20210111182
    Abstract: Some embodiments relate to an integrated chip that includes a first source/drain region and a second source/drain region disposed in a substrate. A plane that is substantially perpendicular to an upper surface of the substrate traverses the first source/drain region and the second source/drain region. Agate electrode extends over a channel region in the substrate between the first source/drain region and the second source/drain region. The gate electrode is separated from the channel region by way of a charge trapping dielectric structure. The charge trapping dielectric structure includes a tunnel dielectric layer, a charge trapping dielectric layer over the tunnel dielectric layer, and a blocking dielectric layer over the charge trapping dielectric layer. The channel region has a channel width measured perpendicularly to the plane, and the tunnel dielectric layer has different thicknesses at different respective points along the channel width.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 15, 2021
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Patent number: 10879257
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Patent number: 10872777
    Abstract: The present disclosure relates to integrated circuit device manufacturing processes. A self-aligned double patterning method is provided. In the method, a lithography process for line cut that determines the locations of line termini is performed after forming a spacer layer alongside the mandrel and prior to stripping the mandrel. The lithographic mask for the line cut is aligned to the mandrel and the spacer layer using a mark made of the mandrel material and the spacer material. Compared to the previous approach where the line cut process is performed after the mandrel removal, in the disclosed approach, the line termini mask is made of the mandrel material and the spacer material, and is more distinguishable compared to a mark made of just the spacer material. Thereby, the methods provide robust photo alignment signal for the line cut photolithography and precise positioning of the line termini mask.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 22, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Yu Pan, Kuo-Chyuan Tzeng, Lee-Chuan Tseng, Ying-Hua Chen
  • Publication number: 20200098580
    Abstract: The present disclosure relates to integrated circuit device manufacturing processes. A self-aligned double patterning method is provided. In the method, a lithography process for line cut that determines the locations of line termini is performed after forming a spacer layer alongside the mandrel and prior to stripping the mandrel. The lithographic mask for the line cut is aligned to the mandrel and the spacer layer using a mark made of the mandrel material and the spacer material. Compared to the previous approach where the line cut process is performed after the mandrel removal, in the disclosed approach, the line termini mask is made of the mandrel material and the spacer material, and is more distinguishable compared to a mark made of just the spacer material. Thereby, the methods provide robust photo alignment signal for the line cut photolithography and precise positioning of the line termini mask.
    Type: Application
    Filed: September 30, 2019
    Publication date: March 26, 2020
    Inventors: Jui-Yu Pan, Kuo-Chyuan Tzeng, Lee-Chuan Tseng, Ying-Hua Chen
  • Patent number: 10483119
    Abstract: The present disclosure relates to integrated circuit device manufacturing processes. A self-aligned double patterning method is provided. In the method, a lithography process for line cut that determines the locations of line termini is performed after forming a spacer layer alongside the mandrel and prior to stripping the mandrel. The lithographic mask for the line cut is aligned to the mandrel and the spacer layer using a mark made of the mandrel material and the spacer material. Compared to the previous approach where the line cut process is performed after the mandrel removal, in the disclosed approach, the line termini mask is made of the mandrel material and the spacer material, and is more distinguishable compared to a mark made of just the spacer material. Thereby, the methods provide robust photo alignment signal for the line cut photolithography and precise positioning of the line termini mask.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: November 19, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Yu Pan, Kuo-Chyuan Tzeng, Lee-Chuan Tseng, Ying-Hua Chen
  • Patent number: 10269822
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Publication number: 20190043878
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Application
    Filed: September 27, 2018
    Publication date: February 7, 2019
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Patent number: 9799755
    Abstract: A method for manufacturing a memory device includes forming trenches in a substrate to define an active region, filling an insulation material in the trenches, treating at least one portion of the insulation material, removing an upper portion of the insulation material from the trenches, so as to expose upper portions of side surfaces of the active region and to convert remaining portions of the insulation material in the trenches to shallow trench isolation (STI) disposed on opposite sides of the active region, forming a lower oxide layer, a middle charge trapping layer, and an upper oxide layer which cover the exposed upper portions of the side surfaces of the active region, an upper surface of the active region between the side surfaces of the active region, and the STI, and forming a gate layer on the upper oxide layer.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: October 24, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Yu Yang, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Jui-Yu Pan, Yun-Chi Wu, Yueh-Chieh Chu
  • Publication number: 20170278953
    Abstract: A method for manufacturing a memory device includes forming trenches in a substrate to define an active region, filling an insulation material in the trenches, treating at least one portion of the insulation material, removing an upper portion of the insulation material from the trenches, so as to expose upper portions of side surfaces of the active region and to convert remaining portions of the insulation material in the trenches to shallow trench isolation (STI) disposed on opposite sides of the active region, forming a lower oxide layer, a middle charge trapping layer, and an upper oxide layer which cover the exposed upper portions of the side surfaces of the active region, an upper surface of the active region between the side surfaces of the active region, and the STI, and forming a gate layer on the upper oxide layer.
    Type: Application
    Filed: September 14, 2016
    Publication date: September 28, 2017
    Inventors: Tsung-Yu YANG, Cheng-Bo SHU, Chung-Jen HUANG, Jing-Ru LIN, Jui-Yu PAN, Yun-Chi WU, Yueh-Chieh CHU
  • Publication number: 20170186762
    Abstract: The present disclosure relates to a method of forming an embedded flash memory cell that provides for improved performance by providing for a tunnel dielectric layer having a relatively uniform thickness, and an associated apparatus. The method is performed by forming a charge trapping dielectric structure over a logic region, a control gate region, and a select gate region within a substrate. A first charge trapping dielectric etching process is performed to form an opening in the charge trapping dielectric structure over the logic region, and a thermal gate dielectric layer is formed within the opening. A second charge trapping dielectric etching process is performed to remove the charge trapping dielectric structure over the select gate region. Gate electrodes are formed over the thermal gate dielectric layer and the charge trapping dielectric structure remaining after the second charge trapping dielectric etching process.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 29, 2017
    Inventors: Jui-Yu Pan, Cheng-Bo Shu, Chung-Jen Huang, Jing-Ru Lin, Tsung-Yu Yang, Yun-Chi Wu, Yueh-Chieh Chu
  • Patent number: 8334560
    Abstract: Circuits and methods for providing a floating gate structure comprising floating gate cells having improved reverse tunnel disturb immunity. A floating gate structure is formed over a semiconductor substrate comprising a floating gate, a charge trapping dielectric layer is formed, and a control gate is formed. The floating gate structure has vertical sidewalls, one side adjacent a source region and one side adjacent a drain region. A symmetric sidewall dielectric is formed over the floating gate structure on both the source side and drain side regions. An asymmetric dielectric layer is formed over the drain side sidewall only. The use of the asymmetric sidewall on the drain side sidewall provides improved RTD immunity. Methods for forming the structure are disclosed.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Yu Pan, Chung-Jen Hwang, Ming-Hui Shen
  • Publication number: 20110049603
    Abstract: Circuits and methods for providing a floating gate structure comprising floating gate cells having improved reverse tunnel disturb immunity. A floating gate structure is formed over a semiconductor substrate comprising a floating gate, a charge trapping dielectric layer is formed, and a control gate is formed. The floating gate structure has vertical sidewalls, one side adjacent a source region and one side adjacent a drain region. A symmetric sidewall dielectric is formed over the floating gate structure on both the source side and drain side regions. An asymmetric dielectric layer is formed over the drain side sidewall only. The use of the asymmetric sidewall on the drain side sidewall provides improved RTD immunity. Methods for forming the structure are disclosed.
    Type: Application
    Filed: July 1, 2010
    Publication date: March 3, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Yu Pan, Chung-Jen Hwang, Ming-Hui Shen
  • Publication number: 20080090355
    Abstract: A method for manufacturing flash memory is provided. A tunneling dielectric layer, a conductive layer and a patterned mask layer that exposes a portion of the conductive layer are formed on a substrate. An oxide layer is formed on the exposed conductive layer so that the conductive layer is partitioned through the oxide layer into blocks. The oxide layer is removed and an inter-gate dielectric layer is formed in the opening. A control gate that completely fills the opening is formed. A cap layer is formed over the control gate. The mask layer is then removed. Using the cap layer as a mask, a portion of the conductive layer is removed to form two floating gates under the control gate. An insulating layer is formed on the substrate. Source/drain regions are formed in the substrate on the respective sides of the control gate.
    Type: Application
    Filed: December 12, 2007
    Publication date: April 17, 2008
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventors: I-Chun Chuang, Cheng-Yuan Hsu, Jui-Yu Pan