Patents by Inventor Juing-Yi Wu

Juing-Yi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11281835
    Abstract: A post placement abutment treatment for cell row design is provided. In an embodiment a first cell and a second cell are placed in a first cell row and a third cell and a fourth cell are placed into a second cell row. After placement vias connecting power and ground rails to the underlying structures are analyzed to determine if any can be merged or else removed completely. By merging and removing the closely placed vias, the physical limitations of photolithography may be by-passed, allowing for smaller structures to be formed.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Heng Hsieh, Sheng-Hsiung Wang, Hui-Zhong Zhuang, Yu-Cheng Yeh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Publication number: 20220068812
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first contact and a second contact disposed over a substrate. A center of a first upper surface of the first contact is laterally separated from a center of a second upper surface of the second contact by a first distance. A first interconnect contacts the first upper surface and a second interconnect contacts the second upper surface. A center of a first lower surface of the first interconnect is laterally separated from a center of a second lower surface of the second interconnect by a second distance that is greater than the first distance.
    Type: Application
    Filed: October 14, 2021
    Publication date: March 3, 2022
    Inventors: Liang-Yao Lee, Tsung-Chieh Tsai, Juing-Yi Wu, Chun-Yi Lee
  • Patent number: 11152303
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip has a plurality of gate structures disposed over a substrate. A plurality of metal structures continuously extend from lower surfaces contacting the plurality of gate structures to upper surfaces contacting one or more interconnects within an overlying conductive interconnect layer. The plurality of metal structures are arranged at a first pitch that is larger than a second pitch of the plurality of gate structures.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Yao Lee, Tsung-Chieh Tsai, Juing-Yi Wu, Chun-Yi Lee
  • Patent number: 10998304
    Abstract: A conductive line structure includes two conductive lines in a layout. The two cut lines are over at least a part of the two conductive lines in the layout. The cut lines designate cut sections of the two conductive lines and the cut lines are spaced from each other within a fabrication process limit. The two cut lines are connected in the layout. The two conductive lines are patterned over a substrate in a physical integrated circuit using the two connected parallel cut lines. The two conductive lines are electrically conductive.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 4, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Gun Liu, Tung-Heng Hsieh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Publication number: 20200257842
    Abstract: A post placement abutment treatment for cell row design is provided. In an embodiment a first cell and a second cell are placed in a first cell row and a third cell and a fourth cell are placed into a second cell row. After placement vias connecting power and ground rails to the underlying structures are analyzed to determine if any can be merged or else removed completely. By merging and removing the closely placed vias, the physical limitations of photolithography may be by-passed, allowing for smaller structures to be formed.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Inventors: Tung-Heng Hsieh, Sheng-Hsiung Wang, Hui-Zhong Zhuang, Yu-Cheng Yeh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Patent number: 10664639
    Abstract: A post placement abutment treatment for cell row design is provided. In an embodiment a first cell and a second cell are placed in a first cell row and a third cell and a fourth cell are placed into a second cell row. After placement vias connecting power and ground rails to the underlying structures are analyzed to determine if any can be merged or else removed completely. By merging and removing the closely placed vias, the physical limitations of photolithography may be by-passed, allowing for smaller structures to be formed.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: May 26, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Tung-Heng Hsieh, Sheng-Hsiung Wang, Hui-Zhong Zhuang, Yu-Cheng Yeh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Publication number: 20190287905
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip has a plurality of gate structures disposed over a substrate. A plurality of metal structures continuously extend from lower surfaces contacting the plurality of gate structures to upper surfaces contacting one or more interconnects within an overlying conductive interconnect layer. The plurality of metal structures are arranged at a first pitch that is larger than a second pitch of the plurality of gate structures.
    Type: Application
    Filed: June 5, 2019
    Publication date: September 19, 2019
    Inventors: Liang-Yao Lee, Tsung-Chieh Tsai, Juing-Yi Wu, Chun-Yi Lee
  • Publication number: 20190244950
    Abstract: A conductive line structure includes two conductive lines in a layout. The two cut lines are over at least a part of the two conductive lines in the layout. The cut lines designate cut sections of the two conductive lines and the cut lines are spaced from each other within a fabrication process limit. The two cut lines are connected in the layout. The two conductive lines are patterned over a substrate in a physical integrated circuit using the two connected parallel cut lines. The two conductive lines are electrically conductive.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Ru-Gun Liu, Tung-Heng Hsieh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Patent number: 10366900
    Abstract: In a method for manufacturing a semiconductor device, a first dielectric layer is formed over an underlying structure disposed on a substrate. A planarization resistance layer is formed over the first dielectric layer. A second dielectric layer is formed over the first dielectric layer and the planarization resistance layer. A planarization operation is performed on the second dielectric layer, the planarization resistance layer and the first dielectric layer. The planarization resistance film is made of a material different from the first dielectric layer.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: July 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Juing-Yi Wu, Liang-Yao Lee, Tsung-Chieh Tsai
  • Patent number: 10325849
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip has a plurality of gate structures arranged over a substrate. A plurality of first MOL (middle-of-line) structures are arranged at a first pitch over the substrate at locations interleaved between the plurality of gate structures. The plurality of first MOL structures connect active regions within the substrate to an overlying metal interconnect layer. A plurality of second MOL structures are arranged at a second pitch over the plurality of gate structures at locations interleaved between the plurality of first MOL structures. The plurality of second MOL structures connect the plurality of gate structures to the metal interconnect layer. The second pitch is different than the first pitch. The different pitches avoid misalignment errors between the plurality of gate structures and the metal interconnect layer.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: June 18, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Liang-Yao Lee, Tsung-Chieh Tsai, Juing-Yi Wu, Chun-Yi Lee
  • Patent number: 10283495
    Abstract: A semiconductor device includes two elongated active regions that include source/drain regions for multiple transistor devices, a first contact layer that includes an electrical connection between the two active regions, a second contact layer that includes a connection between two gate lines, and a gate contact layer that provides connections to the gate lines.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 7, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Gun Liu, Chun-Yi Lee, Jyh-Kang Ting, Juing-Yi Wu, Liang-Yao Lee, Tung-Heng Hsieh, Tsung-Chieh Tsai
  • Patent number: 10269785
    Abstract: A conductive line structure includes two conductive lines in a layout. The two cut lines are over at least a part of the two conductive lines in the layout. The cut lines designate cut sections of the two conductive lines and the cut lines are spaced from each other within a fabrication process limit. The two cut lines are connected in the layout. The two conductive lines are patterned over a substrate in a physical integrated circuit using the two connected parallel cut lines. The two conductive lines are electrically conductive.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Gun Liu, Tung-Heng Hsieh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Publication number: 20180253522
    Abstract: A post placement abutment treatment for cell row design is provided. In an embodiment a first cell and a second cell are placed in a first cell row and a third cell and a fourth cell are placed into a second cell row. After placement vias connecting power and ground rails to the underlying structures are analyzed to determine if any can be merged or else removed completely. By merging and removing the closely placed vias, the physical limitations of photolithography may be by-passed, allowing for smaller structures to be formed.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Inventors: Tung-Heng Hsieh, Sheng-Hsiung Wang, Hui-Zhong Zhuang, Yu-Cheng Yeh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Patent number: 9984191
    Abstract: A post placement abutment treatment for cell row design is provided. In an embodiment a first cell and a second cell are placed in a first cell row and a third cell and a fourth cell are placed into a second cell row. After placement vias connecting power and ground rails to the underlying structures are analyzed to determine if any can be merged or else removed completely. By merging and removing the closely placed vias, the physical limitations of photolithography may be by-passed, allowing for smaller structures to be formed.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Tung-Heng Hsieh, Sheng-Hsiung Wang, Hui-Zhong Zhuang, Yu-Cheng Yeh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Publication number: 20170278717
    Abstract: In a method for manufacturing a semiconductor device, a first dielectric layer is formed over an underlying structure disposed on a substrate. A planarization resistance layer is formed over the first dielectric layer. A second dielectric layer is formed over the first dielectric layer and the planarization resistance layer. A planarization operation is performed on the second dielectric layer, the planarization resistance layer and the first dielectric layer. The planarization resistance film is made of a material different from the first dielectric layer.
    Type: Application
    Filed: March 25, 2016
    Publication date: September 28, 2017
    Inventors: Juing-Yi WU, Liang-Yao LEE, Tsung-Chieh TSAI
  • Patent number: 9746783
    Abstract: A method for ameliorating corner rounding effects in a photolithographic process is provided. A semiconductor workpiece having an active device region is provided, and a photoresist layer is formed over the semiconductor workpiece. A mask is provided for patterning for the photoresist layer, wherein the mask comprises pattern having a sharp corner associated with the active device region. The sharp corner is separated from the active device region by a first distance in a first direction and a second distance in a second direction, wherein the first distance meets a minimum criteria for the photolithographic process, and wherein the second distance is greater than the first distance. The photoresist layer is then exposed to a radiation source, and the radiation source patterns the photoresist layer through the mask, defining an exposure region on the semiconductor workpiece having a rounded corner associated with the sharp corner.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: August 29, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Liang-Yao Lee, Jyh-Kang Ting, Tsung-Chieh Tsai, Juing-Yi Wu
  • Patent number: 9637818
    Abstract: Among other things, one or more systems and techniques for defining one or more implant regions or for doping a semiconductor arrangement are provided. A first implant region is defined based upon a first implant mask overlaying a first active region of a semiconductor arrangement. A second implant region is defined based upon the first implant mask and a second implant mask overlaying a second active region of the semiconductor arrangement. A third implant region is defined based upon the second implant mask overlaying a third active region of the semiconductor arrangement. One or more doping processes are performed through the first implant mask and the second implant mask to dope the semiconductor arrangement. Because the first implant mask and the second implant mask overlap the second active region, doping area coverage is improved thus mitigating undesirable voltage threshold variations otherwise resulting from inadequate doping area coverage.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 2, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Juing-Yi Wu, Jyh-Kang Ting, Tsung-Chieh Tsai, Liang-Yao Lee
  • Publication number: 20170025401
    Abstract: A conductive line structure includes two conductive lines in a layout. The two cut lines are over at least a part of the two conductive lines in the layout. The cut lines designate cut sections of the two conductive lines and the cut lines are spaced from each other within a fabrication process limit. The two cut lines are connected in the layout. The two conductive lines are patterned over a substrate in a physical integrated circuit using the two connected parallel cut lines. The two conductive lines are electrically conductive.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 26, 2017
    Inventors: Ru-Gun Liu, Tung-Heng Hsieh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting
  • Patent number: 9508791
    Abstract: A semiconductor device comprises a non-conductive gate feature over a substrate, and a metal gate electrode over the substrate. The metal gate electrode comprises a portion over an active region of the substrate, and a portion over an isolation feature of the substrate ending at an end cap. A vertical profile of the metal gate electrode at the end cap matches a vertical profile of the metal gate electrode in the portion over the active region.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: November 29, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Chieh Tsai, Yung-Che Albert Shih, Jyh-Kang Ting, Juing-Yi Wu, Liang-Yao Lee
  • Patent number: 9472501
    Abstract: A conductive line structure includes two conductive lines in a layout. The two cut lines are over at least a part of the two conductive lines in the layout. The cut lines designate cut sections of the two conductive lines and the cut lines are spaced from each other within a fabrication process limit. The two cut lines are connected in the layout. The two conductive lines are patterned over a substrate in a physical integrated circuit using the two connected parallel cut lines. The two conductive lines are electrically conductive.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: October 18, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Gun Liu, Tung-Heng Hsieh, Tsung-Chieh Tsai, Juing-Yi Wu, Liang-Yao Lee, Jyh-Kang Ting