Patents by Inventor Jules John Magda

Jules John Magda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11445997
    Abstract: Systems and methods for accurately measuring changes in biomarker sensitive hydrogel volume and shape due to exposure to various biomarkers include a system for identifying one or more dimensional changes in a biomarker sensitive hydrogel positioned within an in vivo environment. The system includes a biomarker sensitive hydrogel positioned within an in vivo environment and configured to dimensionally change in response to interaction with predefined biomarkers. The system additionally includes an ultrasound transducer for locating and identifying one or more characteristics of the biomarker sensitive hydrogel and a computer system in electrical communication with the ultrasound transducer. The computer system is configured to receive characteristics of the biomarker sensitive hydrogel from the ultrasound transducer and determine dimensional changes of the biomarker sensitive hydrogel based on the received characteristics.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 20, 2022
    Assignees: UNIVERSITY OF UTAH RESEARCH FOUNDATION, SENTIOMED, INC.
    Inventors: Mahender nath Avula, Douglas A. Christensen, Navid Farhoudi, Stan Kanarowski, Julia Koerner, Jules John Magda, Rami Sami Marrouche, Christopher F. Reiche, Florian Solzbacher, Michael David Sorenson
  • Publication number: 20200114353
    Abstract: Microfluidics sensor devices having an array of smart polymer hydrogel features for resistive channel analyte sensing via hydrogel swelling and de-swelling, and methods of manufacturing and using the same. Inexpensive, rapid-responsive, point-of-use sensors for monitoring disease biomarkers or environmental contaminants in, for example, drinking water, employ smart polymer hydrogels as recognition elements that can be tailored to detect almost any target analyte. Fabrication involves mask-templated UV photopolymerization to produce an array of smart hydrogel pillars, with large surface area-to-volume ratios, inside sub-millimeter channels located on microfluidics devices. The pillars swell or shrink upon contact aqueous solutions containing a target analyte, thereby changing the resistance of the microfluidic channel to ionic current flow when a bias voltage is applied to the system. Hence resistance measurements can be used to transduce hydrogel swelling changes into electrical signals.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 16, 2020
    Inventors: Hsuan-Yu Leu, Navid Farhoudi, Christopher F. Reiche, Julia Koerner, Swomitra Kumar Mohanty, Florian Solzbacher, Jules John Magda
  • Publication number: 20200093408
    Abstract: Systems, methods, and sensor devices for identifying one or more changes in a stimulus-responsive hydrogel include a sensor device having (i) a sensing structure and (ii) a stimulus-responsive hydrogel associated with a first side of the sensing structure. The sensing structure includes a flexible thin film polymer and an electric sensing element capable of electric impedance change, and the hydrogel is configured to dimensionally change in response to predefined stimuli such that a dimensional change of the hydrogel causes a change in an impedance property of the electric sensing element. Systems including such a sensor device can additionally include a meter in electrical communication with the sensor device to identify changes in the impedance properties of the structure and/or a catheter sheath configured for placement within an in vivo environment and is sized and shaped to receive the sensor device within a lumen thereof.
    Type: Application
    Filed: June 12, 2018
    Publication date: March 26, 2020
    Inventors: Florian Solzbacker, Stan Kanarowski, Jules John Magda, Mahender Nath Avula, Tatjana S. Bevans, Nassir F. Marrouche, Derek J. Sakata, Julia Koerner, Christopher Reiche
  • Publication number: 20190192113
    Abstract: Systems and methods for accurately measuring changes in biomarker sensitive hydrogel volume and shape due to exposure to various biomarkers include a system for identifying one or more dimensional changes in a biomarker sensitive hydrogel positioned within an in vivo environment. The system includes a biomarker sensitive hydrogel positioned within an in vivo environment and configured to dimensionally change in response to interaction with predefined biomarkers. The system additionally includes an ultrasound transducer for locating and identifying one or more characteristics of the biomarker sensitive hydrogel and a computer system in electrical communication with the ultrasound transducer. The computer system is configured to receive characteristics of the biomarker sensitive hydrogel from the ultrasound transducer and determine dimensional changes of the biomarker sensitive hydrogel based on the received characteristics.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 27, 2019
    Inventors: Mahender nath Avula, Douglas A. Christensen, Navid Farhoudi, Stan Kanarowski, Julia Koerner, Jules John Magda, Rami Sami Marrouche, Christopher F. Reiche, Florian Solzbacher, Michael David Sorenson
  • Patent number: 9976974
    Abstract: Osmolarity-responsive hydrogel sensors, particularly biosensors, containing quaternary ammonium functionality, which are useful for, inter alia, continuous osmolarity monitoring with no pH interference, are disclosed. Methods of using the osmolarity-responsive hydrogels are also disclosed.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 22, 2018
    Assignee: University of Utah Research Foundation
    Inventors: Tram Nguyen, Jules John Magda, Seung-Hei Cho, Prashant Tathireddy
  • Publication number: 20160216221
    Abstract: Osmolarity-responsive hydrogel sensors, particularly biosensors, containing quaternary ammonium functionality, which are useful for, inter alia, continuous osmolarity monitoring with no pH interference, are disclosed. Methods of using the osmolarity-responsive hydrogels are also disclosed.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 28, 2016
    Inventors: Tram NGUYEN, Jules John MAGDA, Seung-Hei CHO, Prashant TATHIREDDY
  • Publication number: 20130143821
    Abstract: Described herein are modified hyaluronans or the pharmaceutically-acceptable salt or ester thereof, wherein the modified hyaluronan comprises at least one hydrophobic polypeptide covalently bonded to hyaluronan. The modified hyaluronans can be used as viscosupplements in a number of medical applications. The modified hyaluronans can also be used in several biological and medical applications. Methods for preparing the modified hyaluronans are also provided herein.
    Type: Application
    Filed: February 3, 2011
    Publication date: June 6, 2013
    Applicants: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Jules John Magda, Grant D. mith, Dmitry Bedrov, Jimmy W. Mays
  • Patent number: 6514689
    Abstract: A biosensor (10) has a hydrogel (30) in a rigid and preferably biocompatible enclosure (20). The hydrogel (30) includes an immobilized analyte binding molecule (ABM) and an immobilized analyte. The immobilized analyte competitively binds with free analyte to the ABM, thus changing the number of crosslinks in the hydrogel (30), which changes hydrogel swelling tendency (and thus the osmotic pressure) in its confined space in proportion to the concentration of free analyte concentration. By measuring the change in hydrogel pressure with a pressure transducer (40), the biosensor (10) is able to accurately measure the concentration of the free analyte molecule without the problem of oxygen limitations and interference encountered by prior art biosensors. A battery (64) powered telemeter (60) operably engaged to the pressure transducer (40) sends a radio data signal to a receiver (66) containing an alarm system operably attached to a computer (62).
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: February 4, 2003
    Assignee: M-Biotech, Inc.
    Inventors: In Suk Han, Jules John Magda, Seok Lew Lew, Young San Jean
  • Patent number: 6475750
    Abstract: A biosensor (10) has a hydrogel (30) in a rigid and referably biocompatible enclosure (20). The hydrogel (30) includes an immobilized glucose-binding molecule such as concanavalin A (Con A) and an immobilized hexose saccharide such as a-D-mannopyranoside. The immobilized hexose saccharide competitively binds with free glucose to the glucose-binding molecules, thus changing the number of crosslinks in the hydrogel (30), which changes hydrogel swelling tendency and the pressure of the hydrogel in its confined space in proportion to the concentration of free glucose. By measuring the change in hydrogel pressure with a pressure transducer (40), the biosensor (10) is able to accurately measure the concentration of the tree glucose molecule without the problem of oxygen limitations and interference encountered by prior art biosensors.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: November 5, 2002
    Assignee: M-Biotech, Inc.
    Inventors: In Suk Han, You Han Bae, Dal Young Jung, Jules John Magda
  • Publication number: 20020042065
    Abstract: A biosensor (10) has a hydrogel (30) in a rigid and preferably biocompatible enclosure (20). The hydrogel (30) includes an immobilized analyte binding molecule (ABM) and an immobilized analyte. The immobilized analyte competitively binds with free analyte to the ABM, thus changing the number of crosslinks in the hydrogel (30), which changes hydrogel swelling tendency (and thus the osmotic pressure) in its confined space in proportion to the concentration of free analyte concentration. By measuring the change in hydrogel pressure with a pressure transducer (40), the biosensor (10) is able to accurately measure the concentration of the free analyte molecule without the problem of oxygen limitations and interference encountered by prior art biosensors. A battery (64) powered telemeter (60) operably engaged to the pressure transducer (40) sends a radio data signal to a receiver (66) containing an alarm system operably attached to a computer (62).
    Type: Application
    Filed: April 20, 2001
    Publication date: April 11, 2002
    Inventors: In Suk Han, Jules John Magda, Seok Lew Lew, Young San Jean