Patents by Inventor Julia A. Larsen

Julia A. Larsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7326225
    Abstract: The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape. The radiopaque strand can have a core strand with a plurality of intermittently spaced apart enlarged radiopaque portions that may be a plurality of beads of radiopaque material spaced apart and mounted on the core strand, or a plurality of coils intermittently wound about and spaced apart on the core strand. A polyhedral occlusive device is also provided, adapted to be inserted into a portion of a vasculature for occluding a portion of the vasculature, for use in interventional therapy and vascular surgery.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: February 5, 2008
    Assignee: Micrus Endovascular Corporation
    Inventors: David A. Ferrera, Daniel R. Kurz, Lok A. Lei, Julia A. Larsen
  • Publication number: 20070016233
    Abstract: The three-dimensional device is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The flexible strands in a multi-stranded micro-cable of the device can be helically wound, or can be configured as parallel, longitudinal strands, and can also be formed to have a secondary, three-dimensional therapeutic configuration, such as helical, conical, spherical, or other geometric shapes. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape.
    Type: Application
    Filed: May 16, 2006
    Publication date: January 18, 2007
    Inventors: David Ferrera, Daniel Kurz, Lok Lei, Julia Larsen
  • Publication number: 20040243168
    Abstract: The three-dimensional device is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The flexible strands in a multi-stranded micro-cable of the device can be helically wound, or can be configured as parallel, longitudinal strands, and can also be formed to have a secondary, three-dimensional therapeutic configuration, such as helical, conical, spherical, or other geometric shapes. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape.
    Type: Application
    Filed: July 28, 2003
    Publication date: December 2, 2004
    Inventors: David A. Ferrera, Daniel R. Kurz, Lok A. Lei, Julia A. Larsen
  • Patent number: 6616617
    Abstract: The three dimensional device is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The device is formed from a multi-stranded microcable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The device can be bundled by an outer cover to constrain the strands of the micro-cable about a longitudinal axis to produce a composite banded cable. The radiopaque strand can have a core strand with a plurality of intermittently spaced apart enlarged radiopaque portions that may be a plurality of beads of radiopaque material spaced apart and mounted on the core strand, or a plurality of coils intermittently wound about and spaced apart on the core strand.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: September 9, 2003
    Assignee: Micrus Corporation
    Inventors: David A. Ferrera, Daniel R. Kurz, Lok A. Lei, Julia A. Larsen