Patents by Inventor Julia B. Patrone

Julia B. Patrone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11786153
    Abstract: A wearable sensor system includes a flexible patch, an electronic circuit disposed on the flexible patch, and a disposable sensor disposed on the flexible patch and connected to the electronic circuit via a socket. The disposable sensor detects a chemical compound. The electronic circuit generates a detection signal commensurate with the chemical compound detected by the disposable sensor. The disposable sensor is removably plugged into the socket, thereby permitting replacement of the disposable sensor upon satisfaction of a predetermined condition. A battery disposed is on the flexible patch and connected to the electronic circuit to power the electronic circuit. A transceiver is connected to the electronic circuit, wherein the transceiver transmits the detection signal.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: October 17, 2023
    Assignee: The Johns Hopkins University
    Inventors: Konstantinos Gerasopoulos, Julia B. Patrone, Leslie H. Hamilton, Luke J. Currano, Matthew A. Hagedon, Felix Connor Sage, Mekbib Astatke
  • Patent number: 10758630
    Abstract: A topical composition includes a nanoemulsion of a plurality of hydrophobic particles having a hydrophilic coating therein. The hydrophobic particles are derived from the same or different hydrophobic material and each hydrophobic particle has a melting point below the melting point of the respective hydrophobic material. The hydrophobic particles comprise a mean particle size of less than about 10 nm, and the nanoemulsion further includes one or more pharmaceutically active agents.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 1, 2020
    Assignee: The Johns Hopkins University
    Inventors: Jennifer L. Sample, Julia B. Patrone, Jason J. Benkoski, Jennifer L. Breidenich, Lisa A. Kelly, Huong Le, James C. Crookston, Marcia W. Patchan, Luis Garza, Xiomara Calderon-Colon, Joshua T. Wolfe, Mellisa L. Theodore, Amanda Nelson, Sewon Kang
  • Publication number: 20200138343
    Abstract: A wearable sensor system includes a flexible patch, an electronic circuit disposed on the flexible patch, and a disposable sensor disposed on the flexible patch and connected to the electronic circuit via a socket. The disposable sensor detects a chemical compound. The electronic circuit generates a detection signal commensurate with the chemical compound detected by the disposable sensor. The disposable sensor is removably plugged into the socket, thereby permitting replacement of the disposable sensor upon satisfaction of a predetermined condition. A battery disposed is on the flexible patch and connected to the electronic circuit to power the electronic circuit. A transceiver is connected to the electronic circuit, wherein the transceiver transmits the detection signal.
    Type: Application
    Filed: August 30, 2019
    Publication date: May 7, 2020
    Inventors: Konstantinos Gerasopoulos, Julia B. Patrone, Leslie H. Hamilton, Luke J. Currano, Matthew A. Hagedon, Felix Connor Sage, Mekbib Astatke
  • Publication number: 20190201578
    Abstract: A biomaterial implant may include a collagen membrane. The biomaterial implant may further include a plurality of nanoparticles embedded in the collagen membrane. Furthermore, at least one nanoparticle of the plurality of nanoparticles may include a polymer shell and a bio-active therapeutic agent encapsulated by the polymer shell.
    Type: Application
    Filed: October 26, 2018
    Publication date: July 4, 2019
    Inventors: Morgana M. Trexler, Xiomara Calderon-Colon, Leslie H. Hamilton, Min Zhao, Brian Reid, Julia B. Patrone, Lance M. Baird
  • Patent number: 9441080
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: September 13, 2016
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jeffrey P. Maranchi, Jennifer L. Breidenich, Xiomara Calderon-Colon, Julia B. Patrone, Jennifer H. Elisseeff, Marcia W. Patchan, Jenna L. Graham, Oliver D. Schein
  • Patent number: 9314531
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: April 19, 2016
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jennifer H. Elisseeff, Daniel Mulreany, Qiongyu Guo, Jennifer L. Breidenich, Jeffrey P. Maranchi, Jenna L. Graham, Julia B. Patrone, Marcia W. Patchan, Xiomara Calderon-Colon
  • Publication number: 20160074520
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Application
    Filed: October 28, 2015
    Publication date: March 17, 2016
    Inventors: Morgana M. Trexler, Jennifer H. Elisseeff, Daniel Mulreany, Qiongyu Guo, Jennifer L. Breidenich, Jeffrey P. Maranchi, Jenna L. Graham, Julia B. Patrone, Marcia W. Patchan, Xiomara Calderon-Colon
  • Publication number: 20150368408
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 24, 2015
    Inventors: Morgana M. Trexler, Jeffrey P. Maranchi, Jennifer L. Breidenich, Xiomara Calderon-Colon, Julia B. Patrone, Jennifer H. Elisseeff, Marcia W. Patchan, Jenna L. Graham, Oliver D. Schein
  • Patent number: 9211256
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: December 15, 2015
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon, Daniel Mulreany, Qiongyu Guo
  • Patent number: 9175153
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: November 3, 2015
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Publication number: 20150044446
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Application
    Filed: September 11, 2014
    Publication date: February 12, 2015
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Patent number: 8871016
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The present invention further provides a process for preparing a cellulose hydrogel comprising: (i) contacting cellulose with a solvent to activate the cellulose; (ii) optionally removing the solvent from the activated cellulose; (iii) substantially dissolving the activated cellulose to form a solution; (iv) allowing the solution to gel; and optionally (v) drying the gel and rehydrating the gel. The cellulose hydrogel can have many uses, including uses as contact lenses.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 28, 2014
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Patent number: 8785167
    Abstract: A biocompatible article including (a) a biocompatible hydrogel; (b) an adhesive coating on at least a portion of the hydrogel; and (c) one or more organisms adhered to at least a portion of the adhesive coating is disclosed.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 22, 2014
    Assignee: The Johns Hopkins University
    Inventors: Richard S. Potember, Jennifer L. Breidenich, Julia B. Patrone
  • Publication number: 20130032059
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The present invention further provides a process for preparing a cellulose hydrogel comprising: (i) contacting cellulose with a solvent to activate the cellulose; (ii) optionally removing the solvent from the activated cellulose; (iii) substantially dissolving the activated cellulose to form a solution; (iv) allowing the solution to gel; and optionally (v) drying the gel and rehydrating the gel. The cellulose hydrogel can have many uses, including uses as contact lenses.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Publication number: 20120231038
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Application
    Filed: November 14, 2011
    Publication date: September 13, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Publication number: 20120039814
    Abstract: A topical composition includes a nanoemulsion of a plurality of hydrophobic particles having a hydrophilic coating therein. The hydrophobic particles are derived from the same or different hydrophobic material and each hydrophobic particle has a melting point below the melting point of the respective hydrophobic material. The nanoemulsion further includes one or more pharmaceutically active agents and/or one or more chemiluminescent disease-detecting systems.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 16, 2012
    Inventors: Jennifer L. Sample, Julia B. Patrone, Jason J. Benkoski, James C. Crookston, Huong Le, Jennifer L. Breidenich, Lisa A. Kelly
  • Publication number: 20110294159
    Abstract: A biocompatible article including (a) a biocompatible hydrogel; (b) an adhesive coating on at least a portion of the hydrogel; and (c) one or more organisms adhered to at least a portion of the adhesive coating is disclosed.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Richard S. Potember, Jennifer L. Breidenich, Julia B. Patrone