Patents by Inventor Julia Grigorieva

Julia Grigorieva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11621057
    Abstract: A method of generating a classifier includes a step of classifying each member of a development set of samples with a class label in a binary classification scheme with a first classifier; and generating a second classifier using a classifier development process with an input classifier development set being the members of the development set assigned one of the two class labels in the binary classification scheme by the first classifier. The second classifier stratifies the members of the set with an early label into two further sub-groups. We also describe identifying a plurality of different clinical sub-groups within the development set based on the clinical data and for each of the different clinical sub-groups, conducting a classifier generation process for each of the clinical sub-groups thereby generating clinical subgroup classifiers.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 4, 2023
    Assignee: BIODESIX, INC.
    Inventors: Arni Steingrimsson, Joanna Röder, Julia Grigorieva, Heinrich Röder, Krista Meyer
  • Publication number: 20220108771
    Abstract: A method of generating a classifier includes a step of classifying each member of a development set of samples with a class label in a binary classification scheme with a first classifier; and generating a second classifier using a classifier development process with an input classifier development set being the members of the development set assigned one of the two class labels in the binary classification scheme by the first classifier. The second classifier stratifies the members of the set with an early label into two further sub-groups. We also describe identifying a plurality of different clinical sub-groups within the development set based on the clinical data and for each of the different clinical sub-groups, conducting a classifier generation process for each of the clinical sub-groups thereby generating clinical subgroup classifiers.
    Type: Application
    Filed: March 10, 2017
    Publication date: April 7, 2022
    Inventors: Arni Steingrimsson, Joanna Röder, Julia Grigorieva, Heinrich Röder, Krista Meyer
  • Publication number: 20220026416
    Abstract: A blood-based sample from a cancer patient is subject to mass spectrometry and the resulting mass spectral data is classified with the aid of a computer to see if the patient is a member of a class of patients having a poor prognosis. If so, the mass spectral data is further classified with the aid of the computer by a second classifier which identifies whether the patient is nevertheless likely to obtain durable benefit from immunotherapy drugs, e.g., immune checkpoint inhibitors, anti-CTLA4 drugs, and high dose interleukin-2.
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Applicant: BIODESIX, INC.
    Inventors: Carlos OLIVEIRA, Heinrich RODER, Julia GRIGORIEVA, Joanna RODER
  • Patent number: 11150238
    Abstract: A blood-based sample from a cancer patient is subject to mass spectrometry and the resulting mass spectral data is classified with the aid of a computer to see if the patient is a member of a class of patients having a poor prognosis. If so, the mass spectral data is further classified with the aid of the computer by a second classifier which identifies whether the patient is nevertheless likely to obtain durable benefit from immunotherapy drugs, e.g., immune checkpoint inhibitors, anti-CTLA4 drugs, and high dose interleukin-2.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 19, 2021
    Assignee: BIODESIX, INC.
    Inventors: Carlos Oliveira, Heinrich Röder, Julia Grigorieva, Joanna Röder
  • Publication number: 20210098131
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Applicant: BIODESIX, INC.
    Inventors: Joanna Roder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Ami Steingrimsson, Heinrich Roder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10950348
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 16, 2021
    Assignee: BIODESIX, INC.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Publication number: 20190353645
    Abstract: A blood-based sample from a cancer patient is subject to mass spectrometry and the resulting mass spectral data is classified with the aid of a computer to see if the patient is a member of a class of patients having a poor prognosis. If so, the mass spectral data is further classified with the aid of the computer by a second classifier which identifies whether the patient is nevertheless likely to obtain durable benefit from immunotherapy drugs, e.g., immune checkpoint inhibitors, anti-CTLA4 drugs, and high dose interleukin-2.
    Type: Application
    Filed: January 5, 2018
    Publication date: November 21, 2019
    Inventors: Carlos Oliveira, Heinrich Röder, Julia Grigorieva, Joanna Röder
  • Patent number: 10217620
    Abstract: Hepatocellular carcinoma (HCC) is detected in a patient with liver disease. Mass spectrometry data from a blood-based sample from the patient is compared to a reference set of mass-spectrometry data from a multitude of other patients with liver disease, including patients with and without HCC, in a general purpose computer configured as a classifier. The classifier generates a class label, such as HCC or No HCC, for the test sample. A laboratory system for early detection of HCC in patients with liver disease is also disclosed. Alternative testing strategies using AFP measurement and a reference set for classification in the form of class-labeled mass spectral data from blood-based samples of lung cancer patients are also described, including multi-stage testing.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 26, 2019
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Carlos Oliveira, Julia Grigorieva, Heinrich Röder, Devalingam Mahalingam
  • Publication number: 20180323049
    Abstract: Hepatocellular carcinoma (HCC) is detected in a patient with liver disease. Mass spectrometry data from a blood-based sample from the patient is compared to a reference set of mass-spectrometry data from a multitude of other patients with liver disease, including patients with and without HCC, in a general purpose computer configured as a classifier. The classifier generates a class label, such as HCC or No HCC, for the test sample. A laboratory system for early detection of HCC in patients with liver disease is also disclosed. Alternative testing strategies using AFP measurement and a reference set for classification in the form of class-labeled mass spectral data from blood-based samples of lung cancer patients are also described, including multi-stage testing.
    Type: Application
    Filed: June 27, 2018
    Publication date: November 8, 2018
    Inventors: Joanna Röder, Carlos Oliveira, Julia Grigorieva, Heinrich Röder
  • Publication number: 20180277249
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10037874
    Abstract: Hepatocellular carcinoma (HCC) is detected in a patient with liver disease. Mass spectrometry data from a blood-based sample from the patient is compared to a reference set of mass-spectrometry data from a multitude of other patients with liver disease, including patients with and without HCC, in a general purpose computer configured as a classifier. The classifier generates a class label, such as HCC or No HCC, for the test sample. A laboratory system for early detection of HCC in patients with liver disease is also disclosed. Alternative testing strategies using AFP measurement and a reference set for classification in the form of class-labeled mass spectral data from blood-based samples of lung cancer patients are also described, including multi-stage testing.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 31, 2018
    Assignees: Biodesix, Inc., The Board of Regents of the University of Texas System
    Inventors: Joanna Röder, Carlos Oliveira, Julia Grigorieva, Heinrich Röder, Devalingam Mahalingam
  • Patent number: 10007766
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 26, 2018
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Patent number: 9824182
    Abstract: A process of determining whether a patient with a disease or disorder will be responsive to a drug, used to treat the disease or disorder, including obtaining a test spectrum produced by a mass spectrometer from a serum produced from the patient. The test spectrum may be processed to determine a relation to a group of class labeled spectra produced from respective serum from other patients having the or similar clinical stage same disease or disorder and known to have responded or not responded to the drug. Based on the relation of the test spectrum to the group of class labeled spectra, a determination may be made as to whether the patient will be responsive to the drug.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: November 21, 2017
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Publication number: 20170039345
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: July 12, 2016
    Publication date: February 9, 2017
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Publication number: 20160163522
    Abstract: Hepatocellular carcinoma (HCC) is detected in a patient with liver disease. Mass spectrometry data from a blood-based sample from the patient is compared to a reference set of mass-spectrometry data from a multitude of other patients with liver disease, including patients with and without HCC, in a general purpose computer configured as a classifier. The classifier generates a class label, such as HCC or No HCC, for the test sample. A laboratory system for early detection of HCC in patients with liver disease is also disclosed. Alternative testing strategies using AFP measurement and a reference set for classification in the form of class-labeled mass spectral data from blood-based samples of lung cancer patients are also described, including multi-stage testing.
    Type: Application
    Filed: November 10, 2015
    Publication date: June 9, 2016
    Inventors: Joanna Röder, Carlos Oliveira, Julia Grigorieva, Heinrich Röder, Devalingam Mahalingam
  • Patent number: 9254120
    Abstract: A mass-spectral method is disclosed for determining whether breast cancer patient is likely to benefit from a combination treatment in the form of administration of a targeted anti-cancer drug in addition to an endocrine therapy drug. The method obtains a mass spectrum from a blood-based sample from the patient. The spectrum is subject to one or more predefined pre-processing steps. Values of selected features in the spectrum at one or more predefined m/z ranges are obtained. The values are used in a classification algorithm using a training set comprising class-labeled spectra and a class label for the sample is obtained. If the class label is “Poor”, the patient is identified as being likely to benefit from the combination treatment. In a variation, the “Poor” class label predicts whether the patient is unlikely to benefit from endocrine therapy drugs alone, regardless of the patient's HER2 status.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: February 9, 2016
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Julia Grigorieva, Heinrich Röder
  • Publication number: 20150285817
    Abstract: A test to identify whether a lung patient is likely to benefit from combination therapy in the form of an epidermal growth factor receptor inhibitor (EGFR-I) and a monoclonal antibody drug targeting hepatocyte growth factor (HGF) as compared to EGFR-I monotherapy. The test makes use of a mass spectrum obtained from a serum or plasma sample and a computer configured as a classifier operating on the mass spectrum and a training set in the form of class-labeled mass spectra from other cancer patients. The computer classifier executes a classification algorithm, such as K-nearest neighbor, and assigns a class label to the serum or plasma sample. Samples classified as “Poor” or the equivalent are associated with patients which are likely to benefit from the combination therapy more than from EGFR-I monotherapy. The invention also includes improved methods of treating patients predicted by the test.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 8, 2015
    Inventors: Heinrich Röder, Julia Grigorieva, May Han, Philip Komarnitsky, Jeno Gyuris
  • Patent number: 9152758
    Abstract: A process of determining whether a patient with a disease or disorder will be responsive to a drug, used to treat the disease or disorder, including obtaining a test spectrum produced by a mass spectrometer from a serum produced from the patient. The test spectrum may be processed to determine a relation to a group of class labeled spectra produced from respective serum from other patients having the or similar clinical stage same disease or disorder and known to have responded or not responded to the drug. Based on the relation of the test spectrum to the group of class labeled spectra, a determination may be made as to whether the patient will be responsive to the drug.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: October 6, 2015
    Assignee: Biodesix, Inc.
    Inventors: Heinrich Röder, Maxim Tsypin, Julia Grigorieva
  • Patent number: 8914238
    Abstract: A mass-spectral method is disclosed for determining whether a breast cancer patient is likely to benefit from administration of a combination treatment in the form of a targeted anti-cancer drug in addition to an endocrine therapy drug. The method obtains a mass spectrum from a blood-based sample from the patient. The spectrum is subject to one or more predefined pre-processing steps. Values of selected features in the spectrum at one or more predefined m/z ranges are obtained. The values are used in a classification algorithm using a training set comprising class-labeled spectra a class label for the sample is obtained. If the class label is “Poor”, the patient is identified as being likely to benefit from the combination treatment. In a variation, the “Poor” class label predicts whether the patient is unlikely to benefit from endocrine therapy drugs alone, regardless of the patient's HER2 status.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: December 16, 2014
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Julia Grigorieva, Heinrich Röder
  • Publication number: 20140284468
    Abstract: Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a solid epithelial tumor cancer patient is likely to benefit from a therapeutic agent or a combination of therapeutic agents targeting agonists of the receptors, receptors or proteins involved in MAPK (mitogen-activated protein kinase) pathways or the PKC (protein kinase C) pathway upstream from or at Akt or ERK/JNK/p38 or PKC, such as therapeutic agents targeting EGFR and/or HER2. The methods also provide the ability to determine whether the cancer patient is likely to benefit from the combination of a therapeutic agent targeting EFGR and a therapeutic agent targeting COX2; or whether the cancer patient is likely to benefit from the treatment with an NF-?B inhibitor.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Inventors: Julia Grigorieva, Heinrich Röder, Maxim Tsypin