Patents by Inventor Julia Liese

Julia Liese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220298286
    Abstract: Described herein is a process for preparing a polyurethane-polyisocyanurate compound by mixing a) at least one polyisocyanate; b) a mixture (M); c) at least one compound including one or more epoxide groups; d) at least one aliphatic polyol (P1) having a high weight average molecular weight; e) at least one polyol (P2) having a low weight average molecular weight; f) at least one compatibilizer; and, optionally, g) fillers and further additives to form a reaction mixture (RM); and reacting the mixture (RM) to give the polyurethane-polyisocyanurate compound. Also described herein are a polyurethane-polyisocyanurate compound obtainable by the process and a method of using the polyurethane-polyisocyanurate compound for producing bodywork components for vehicles.
    Type: Application
    Filed: August 13, 2020
    Publication date: September 22, 2022
    Inventors: Julia LIESE, Stefan BOKERN
  • Publication number: 20220153908
    Abstract: Described herein is a process for preparing a polyurethane elastomer including the steps of (A) preparing an isocyanate prepolymer (a), where the isocyanate prepolymer has an isocyanate content in the range of ?1 wt.-% to ?9 wt.-%, and (B) preparing a reaction mixture by mixing at least one epoxy compound (b) with the isocyanate prepolymer (a) in presence of at least one catalyst (c), and where the amount of the alkali metal or alkaline earth metal salt is 0.00001 to 0.1 mol per kg of the total weight of the isocyanate prepolymer (a), the epoxy compound (b) and the catalyst (c), and heating the mixture to at least 80° C. to obtain the polyurethane elastomer. Also described herein are a polyurethane elastomer obtained by process and a method of using the polyurethane elastomer as part of a roller or as a sealant.
    Type: Application
    Filed: March 25, 2020
    Publication date: May 19, 2022
    Inventors: Julia Liese, Andre Kamm, Hendrik Wagner
  • Patent number: 10611872
    Abstract: The present invention relates to thermoplastic polyurethanes obtainable or obtained by reaction of at least one aliphatic polyisocyanate; at least one chain extender; and at least one polyol composition, where the polyol composition comprises a polyol selected from the group consisting of polyetherols and at least one bisphenol derivative selected from the group consisting of bisphenol A derivatives with a molecular weight Mw>315 g/mol and bisphenol S derivatives with a molecular weight Mw>315 g/mol, where at least one of the OH groups of the bisphenol derivative is alkoxylated, and to processes for producing such thermoplastic polyurethanes and to the use of a thermoplastic polyurethane according to the invention for producing extrusion products, films and moldings.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: April 7, 2020
    Assignee: BASF SE
    Inventors: Frank Prissok, Sebastian Hartwig, Stefan Bokern, Julia Liese
  • Patent number: 10442885
    Abstract: A process for producing a polyurethane-coated conduit element includes mixing a) a mixture of aromatic and aliphatic polyisocyanate with, b) at least one polymeric compound having at least two hydrogen atoms which are reactive toward isocyanate, c) at least one chain extender, d) a catalyst, and e) optionally at least one other auxiliary, additive, or both, to form a reaction mixture; applying the reaction mixture to a conduit element; and allowing the reaction mixture to react to form a polyurethane layer. The polyurethane-coating conduit element is suitable for maritime applications in the oil and gas industry, which polyurethane has improved hydrolysis stability at high temperatures and nevertheless satisfies the high mechanical demands in the oil and gas industry.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: October 15, 2019
    Assignee: BASF SE
    Inventors: Andre Kamm, Julia Liese, Karl Gust
  • Patent number: 9890895
    Abstract: The present invention relates to a process for producing pipelines with heat-storing properties, in which a) organic polyisocyanate is mixed with b) at least one polymeric compound having at least two isocyanate-reactive hydrogen atoms, c) optionally chain extender and/or crosslinker, d) catalyst, e) wax and f) optionally other assistants and/or additives, to give a first reaction mixture, and the first reaction mixture is applied to a pipe and allowed to react fully to give a first polyurethane layer. The present invention further relates to a pipeline with heat-storing properties obtainable by such a process.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: February 13, 2018
    Assignee: BASF SE
    Inventors: Daniel Freidank, Dejan Petrovic, Wei Leng, Julia Liese
  • Publication number: 20160304659
    Abstract: The present invention relates to thermoplastic polyurethanes obtainable or obtained by reaction of at least one aliphatic polyisocyanate; at least one chain extender; and at least one polyol composition, where the polyol composition comprises a polyol selected from the group consisting of polyetherols and at least one bisphenol derivative selected from the group consisting of bisphenol A derivatives with a molecular weight Mw>315 g/mol and bisphenol S derivatives with a molecular weight Mw>315 g/mol, where at least one of the OH groups of the bisphenol derivative is alkoxylated, and to processes for producing such thermoplastic polyurethanes and to the use of a thermoplastic polyurethane according to the invention for producing extrusion products, films and moldings.
    Type: Application
    Filed: October 28, 2014
    Publication date: October 20, 2016
    Applicant: BASF SE
    Inventors: Frank PRISSOK, Sebastian HARTWIG, Stefan BOKERN, Julia LIESE
  • Publication number: 20140170351
    Abstract: The present invention relates to a process for producing polyurethane-coated conduit elements, in which (a) aliphatic polyisocyanate is mixed with (b) compounds having at least two hydrogen atoms which are reactive toward isocyanate, (c) catalyst and (d) optionally other auxiliaries and/or additives, to form a first reaction mixture, the reaction mixture is applied directly or indirectly to a pipe and allowed to react to form a polyurethane layer, wherein the compounds having at least two hydrogen atoms which are reactive toward isocyanate comprise a compound based on an alkoxylation product of an aromatic starter molecule. The present invention further relates to conduit elements which can be obtained by such a process.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: BASF SE
    Inventors: Andre KAMM, Julia Liese, Paul McCloud
  • Publication number: 20140170352
    Abstract: A process for producing a polyurethane-coated conduit element includes mixing a) a mixture of aromatic and aliphatic polyisocyanate with, b) at least one polymeric compound having at least two hydrogen atoms which are reactive toward isocyanate, c) at least one chain extender, d) a catalyst, and e) optionally at least one other auxiliary, additive, or both, to form a reaction mixture; applying the reaction mixture to a conduit element; and allowing the reaction mixture to react to form a polyurethane layer. The polyurethane-coating conduit element is suitable for maritime applications in the oil and gas industry, which polyurethane has improved hydrolysis stability at high temperatures and nevertheless satisfies the high mechanical demands in the oil and gas industry.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: BASF SE
    Inventors: Andre KAMM, Julia LIESE, Karl GUST
  • Publication number: 20140093668
    Abstract: The present invention relates to a process for producing pipelines with heat-storing properties, in which a) organic polyisocyanate is mixed with b) at least one polymeric compound having at least two isocyanate-reactive hydrogen atoms, c) optionally chain extender and/or crosslinker, d) catalyst, e) wax and f) optionally other assistants and/or additives, to give a first reaction mixture, and the first reaction mixture is applied to a pipe and allowed to react fully to give a first polyurethane layer. The present invention further relates to a pipeline with heat-storing properties obtainable by such a process.
    Type: Application
    Filed: September 25, 2013
    Publication date: April 3, 2014
    Applicant: BASF SE
    Inventors: Daniel FREIDANK, Dejan Petrovic, Wei Leng, Julia Liese