Patents by Inventor Julia Margaret Rowe

Julia Margaret Rowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170080388
    Abstract: A gasoline engine having an exhaust system comprises means for trapping particulate matter (PM) from the exhaust gas and a catalyst for catalysing the oxidation of the PM by carbon dioxide and/or water in the exhaust gas, which catalyst comprising a supported alkali metal. The invention further includes a method of combusting PM from a gasoline engine in CO2 and/or H2O from the exhaust gas at temperatures in excess of 500° C., which method comprising trapping the PM and contacting it with a catalyst comprising a supported alkali metal.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Inventors: John Martin McNamara, Julia Margaret Rowe, Stephen Poulston, Raj Rao Rajaram, Robert Ian Crane, Constantine Arcoumanis, Lauretta Rubino
  • Patent number: 8133306
    Abstract: A gas diffusion substrate includes a non-woven network of carbon fibres, the carbon fibres are graphitised but the non-woven network has not been subjected to a graphitisation process. A mixture of graphitic particles and hydrophobic polymer is disposed within the network. The longest dimension of at least 90% of the graphitic particles is less than 100 ?m. A process for manufacturing gas diffusion substrates includes depositing a slurry of graphitised carbon fibres onto a porous bed forming a wet fibre network, preparing a suspension of graphitic particles and hydrophobic polymer, applying onto, and pulling the suspension into, the network, and drying and firing the network. Another process includes mixing a first slurry of graphitic particles and hydrophobic polymer with a second slurry of graphitised carbon fibres and liquid forming a third slurry, depositing the third slurry onto a porous bed forming a fibre-containing layer, and drying and firing the layer.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: March 13, 2012
    Assignees: Johnson Matthey Public Limited Company, Technical Fibre Products Limited
    Inventors: George Thomas Quayle, Julia Margaret Rowe, Jonathan David Brereton Sharman, Julian Andrew Siodlak, Nigel Julian Walker, Andrew James Fletcher
  • Publication number: 20110232266
    Abstract: A gasoline engine having an exhaust system comprises means for trapping particulate matter (PM) from the exhaust gas and a catalyst for catalysing the oxidation of the PM by carbon dioxide and/or water in the exhaust gas, which catalyst comprising a supported alkali metal. The invention further includes a method of combusting PM from a gasoline engine in CO2 and/or H2O from the exhaust gas at temperatures in excess of 500° C., which method comprising trapping the PM and contacting it with a catalyst comprising a supported alkali metal.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: John Martin McNamara, Julia Margaret Rowe, Stephen Poulston, Raj Rao Rajaram, Robert Ian Crane, Constantine Arcoumanis, Lauretta Rubino
  • Patent number: 7972394
    Abstract: A method of operating a methanation reactor to reduce carbon monoxide concentration in a reformate stream in a fuel cell reformer. The reactor includes a flowpath with a noble metal catalyst supported by a ceramic support such that the reactor preferentially converts carbon monoxide via methanation over that of carbon dioxide. The reduced level of carbon monoxide present in the reformate stream after passing through the methanation reactor reduces the likelihood of poisoning of the catalyst used on the fuel cell anode.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 5, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark Robert Feaviour, Julia Margaret Rowe
  • Publication number: 20080268297
    Abstract: A gas diffusion substrate includes a non-woven network of carbon fibres, the carbon fibres are graphitised but the non-woven network has not been subjected to a graphitisation process. A mixture of graphitic particles and hydrophobic polymer is disposed within the network. The longest dimension of at least 90% of the graphitic particles is less than 100 ?m. A process for manufacturing gas diffusion substrates includes depositing a slurry of graphitised carbon fibres onto a porous bed forming a wet fibre network, preparing a suspension of graphitic particles and hydrophobic polymer, applying onto, and pulling the suspension into, the network, and drying and firing the network. Another process includes mixing a first slurry of graphitic particles and hydrophobic polymer with a second slurry of graphitised carbon fibres and liquid forming a third slurry, depositing the third slurry onto a porous bed forming a fibre-containing layer, and drying and firing the layer.
    Type: Application
    Filed: June 15, 2005
    Publication date: October 30, 2008
    Applicants: Johnson Matthey Public Limited Company, Technical Fibre Products Limited
    Inventors: George Thomas Quayle, Julia Margaret Rowe, Jonathan David Brereton Sharman, Julian Andrew Siodlak, Nigel Julian Walker
  • Patent number: 7338643
    Abstract: A reformate clean-up reactor. The reactor takes a reformate stream and passes it through multiple subreactors that are integrated into a common reactor housing to reduce reformate stream by-product concentration prior to use of the reformate in a fuel cell. The reactor includes a gas shift subreactor to promote the conversion of carbon monoxide to carbon dioxide, a gaseous diffusion membrane subreactor to provide a hydrogen-rich portion of the reformate stream, and a methanation subreactor to convert carbon monoxide into methane and water. In applications where space for a fuel cell system is limited, the integration of the clean—up devices into a common housing provides significant improvements in structural and volumetric efficiency. Moreover, in at least one embodiment of the present invention, the juxtaposition of the gaseous diffusion membrane and the gas shift reactor improves membrane robustness.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: March 4, 2008
    Assignee: General Motors Corporation
    Inventors: Ian Barrey Irons, Julia Margaret Rowe, Peter Geoffrey Gray, Peter Albert Walker
  • Patent number: 7160343
    Abstract: A fuel cell system comprises a fuel cell stack and a carbon monoxide clean-up system in communication with the fuel cell stack. The carbon monoxide cleanup system comprises a first water gas shift reactor, a first hydride heat exchanger, and a second water gas shift reactor. The first water gas shift reactor comprises a first water gas shift catalyst. The first hydride heat exchanger comprises a first metal hydride, and is in communication with the first water gas shift reactor. The second water gas shift reactor comprises a second water gas shift catalyst, and is in communication with the first heat exchanger. The first hydride heat exchanger, and the second water gas shift reactors are disposed such that a reactant stream may pass through the first water gas shift reactor prior to passing through the first heat exchanger, and then pass through the second water gas shift reactor.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: January 9, 2007
    Assignee: General Motors Corporation
    Inventors: Julia Margaret Rowe, Beverley Sowerby
  • Publication number: 20040229091
    Abstract: Methods and systems for carbon monoxide clean-up are provided. The methods and systems utilize water gas shift reactors having water gas shift catalysts and hydride heat exchangers having metal hydrides. The methods and systems allow hydrogen from a reactant stream to be stored in the metal hydride during carbon-monoxide clean-up and subsequently released into the reactant stream. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Inventors: Julia Margaret Rowe, Beverley Sowerby
  • Publication number: 20040185312
    Abstract: A reformate clean-up reactor. The reactor takes a reformate stream and passes it through multiple subreactors that are integrated into a common reactor housing to reduce reformate stream by-product concentration prior to use of the reformate in a fuel cell. The reactor includes a gas shift subreactor to promote the conversion of carbon monoxide to carbon dioxide, a gaseous diffusion membrane subreactor to provide a hydrogen-rich portion of the reformate stream, and a methanation subreactor to convert carbon monoxide into methane and water. In applications where space for a fuel cell system is limited, the integration of the clean-up devices into a common housing provides significant improvements in structural and volumetric efficiency. Moreover, in at least one embodiment of the present invention, the juxtaposition of the gaseous diffusion membrane and the gas shift reactor improves membrane robustness.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 23, 2004
    Inventors: Ian Barrey Irons, Julia Margaret Rowe, Peter Geoffrey Gray, Peter Albert Walker
  • Publication number: 20040175310
    Abstract: A methanation reactor to reduce carbon monoxide concentration in a reformate stream. The reactor includes a noble metal catalyst supported by a ceramic support such that the reactor preferentially converts of carbon monoxide via methanation over that of carbon dioxide. In one embodiment, the ceramic support is alumina with a coating of silica deposited on the alumina to increase the support surface acidity and consequent carbon monoxide conversion. The purpose of the abstract is to enable the United States Patent and Trademark Office and the public generally to determine from a cursory inspection the nature and gist of the technical disclosure, and is not to be used for interpreting the scope of the claims.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 9, 2004
    Inventors: Mark Robert Feaviour, Julia Margaret Rowe