Patents by Inventor Julian Borejdo

Julian Borejdo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9612245
    Abstract: The present invention includes a method and system for enhancing the signal-to-noise ratio in emission detection comprising: selecting a probe capable of at least one of fluorescence, phosphorescence, or delayed fluorescence in or about a sample that comprises interfering background signal; and exposing the probe to one or more controllable bursts, each burst comprising two or more pulses, wherein the one or more controllable bursts of high repetition energy pulses enhance the signal from the probe above that of the background signal.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: April 4, 2017
    Assignees: University of North Texas Health Science Center at Fort Worth, Texas Christian University
    Inventors: Ryan M. Rich, Ignacy Gryczynski, Julian Borejdo, Zygmunt Gryczynski
  • Patent number: 9376315
    Abstract: The present invention provides partially fluorescent nanoparticles and methods of making and using the partially fluorescent nanoparticle having a nanoparticle with a matrix and a fluorescent dye dispersed in or about the matrix, wherein at least a portion of the fluorescent dye has been anisotropically bleached.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: June 28, 2016
    Assignee: University of North Texas Health Science Center at Fort Worth
    Inventors: Zygmunt Gryczynski, Ignacy Gryczynski, Rafal Luchowski, Julian Borejdo
  • Publication number: 20150011406
    Abstract: The present invention includes a method and system for enhancing the signal-to-noise ratio in emission detection comprising: selecting a probe capable of at least one of fluorescence, phosphorescence, or delayed fluorescence in or about a sample that comprises interfering background signal; and exposing the probe to one or more controllable bursts, each burst comprising two or more pulses, wherein the one or more controllable bursts of high repetition energy pulses enhance the signal from the probe above that of the background signal.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Inventors: Ryan M. Rich, Ignacy Gryczynski, Julian Borejdo, Zygmunt Gryczynski
  • Patent number: 8159676
    Abstract: The present invention includes methods for ratiometric detection of analytes by surface plasmon coupled emission detection that includes disposing a target on the metal layer of a surface plasmon resonance detection system; coupling a first analyte to a first fluorescent dye and a second analyte to a second fluorescent dye; contacting the first and second analytes to the target on the surface plasmon resonance detection system; and measuring the intensity of a first and a second surface plasmon resonance enhanced fluorescence emission ring, wherein the first and second rings, respectively, quantitatively represents the amount of first and second analyte within 50 nanometers of the metal surface.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: April 17, 2012
    Assignee: University of North Texas, Health Science Center at Fort Worth
    Inventors: Zygmunt Gryczynski, Ignacy Gryczynski, Evgenia Matveeva, Julian Borejdo
  • Publication number: 20110207614
    Abstract: The present invention provides partially fluorescent nanoparticles and methods of making and using the partially fluorescent nanoparticle having a nanoparticle with a matrix and a fluorescent dye dispersed in or about the matrix, wherein at least a portion of the fluorescent dye has been anisotropically bleached.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 25, 2011
    Applicant: University of North Texas Health Science Center at Fort Worth
    Inventors: Zygmunt Gryczynski, Ignacy Gryczynski, Rafal Luchowski, Julian Borejdo
  • Patent number: 7956989
    Abstract: The present invention includes a microscope and a method for using the microscope for single molecule with reduced photobleaching of a fluorophore (20) that includes a light translucent material (16); a metal layer (18) disposed on the light translucent material (16); a medium (15) disposed on the metal layer (18), the medium (15) having one or more fluorophores (20) capable of binding a target analyte (e.g.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: June 7, 2011
    Assignee: University of North Texas Health Science Center at Fort Worth
    Inventors: Zygmunt Gryczynski, Ignacy Gryczynski, Nils Calander, Julian Borejdo
  • Publication number: 20110089317
    Abstract: The present invention describes the development of thin film calibration strips for microscopy/spectroscopy systems and a simple method/routine to conduct instrument calibration using partially (uniaxially) oriented strip to calibrate microscopy system without the prior knowledge of exact polarization of the strip. The invention describes results from studies including a styryl derivative (LDS 798) embedded in poly(vinyl alcohol) (PVA) film. These films were progressively stretched up to 8 folds. Vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The stretched films have high polarization values for isotropic excitation. The isotropic and stretched PVA films doped with LDS 798 can be used as etalons in near infra red (NIR) spectroscopic measurements.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 21, 2011
    Applicant: University of North Texas Health Science Center at Forth Worth
    Inventors: Ignacy Gryczynski, Zygmunt Gryczynski, Rafal Luchowski, Julian Borejdo
  • Publication number: 20090218516
    Abstract: The present invention includes methods for ratiometric detection of analytes by surface plasmon coupled emission detection that includes disposing a target on the metal layer of a surface plasmon resonance detection system; coupling a first analyte to a first fluorescent dye and a second analyte to a second fluorescent dye; contacting the first and second analytes to the target on the surface plasmon resonance detection system; and measuring the intensity of a first and a second surface plasmon resonance enhanced fluorescence emission ring, wherein the first and second rings, respectively, quantitatively represents the amount of first and second analyte within 50 nanometers of the metal surface.
    Type: Application
    Filed: January 20, 2009
    Publication date: September 3, 2009
    Applicant: University of North Texas Health Science Center at Fort Worth
    Inventors: Zygmunt Gryczynski, Ignacy Gryczynski, Evgenia Matveeva, Julian Borejdo
  • Publication number: 20080231834
    Abstract: The present invention includes a microscope and a method for using the microscope for single molecule with reduced photobleaching of a fluorophore (20) that includes a light translucent material (16); a metal layer (18) disposed on the light translucent material (16); a medium (15) disposed on the metal layer (18), the medium (15) having one or more fluorophores (20) capable of binding a target analyte (e.g.
    Type: Application
    Filed: January 22, 2008
    Publication date: September 25, 2008
    Applicant: University of North Texas Health Science Center at Fort Worth
    Inventors: Zygmunt Gryczynski, Ignacy Gryczynski, Nils Calander, Julian Borejdo