Patents by Inventor Julian Kassel

Julian Kassel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230173250
    Abstract: A cardiac assist system having a pumping device for moving blood, wherein a pumping capacity of the pumping device is adjustable using an adjustment signal based on laser doppler with an optical fiber. A measuring device measures a flow rate of the body fluid, the measuring device comprising at least one light source for outputting a light beam and at least one sensor element for detecting a reflected partial beam of the light beam. The measuring device is adapted to measure the body fluid using the reflected partial beam of the light beam. A determination device is adapted to determine the adjustment signal using the measurement signal. The device may include a bore opening to a blood flow channel, with an optical fiber extending through the bore.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 8, 2023
    Inventors: Johannes Stigloher, Johannes Bette, Attila Fabiunke, Marvin Mitze, Hans Christof, Martina Budde, Michael Curcic, Julian Kassel, Thomas Alexander Schlebusch, Marc Schmid
  • Patent number: 11583857
    Abstract: A microfluidic device for processing a liquid in ludci includes at least one pneumatic substrate with a pneumatic cavity and a fluidic substrate with a fluidic cavity for accommodating the liquid. The fluidic cavity is arranged opposite the pneumatic cavity. In addition, the microfluidic device has a flexible membrane which is arranged between the pneumatic substrate and the fluidic substrate. The flexible membrane is designed to fluidically separate, from one another, a fluidic chamber extending at least in part in the fluidic cavity and a pneumatic chamber extending at least in part in the pneumatic cavity. The microfluidic device further includes a first pneumatic channel for applying a first pneumatic pressure to the pneumatic chamber and a second pneumatic channel for applying a second pneumatic pressure to the pneumatic chamber.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: February 21, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Julian Kassel, Christian Dorrer, Daniel Czurratis
  • Publication number: 20220161019
    Abstract: Disclosed is a minimally invasive miniaturized percutaneous mechanical circulatory support system. The system may be placed across the aortic valve via a single femoral arterial access point. The system includes a low profile axial rotary blood pump carried by the distal end of a catheter. The system can be percutaneously inserted through the femoral artery and positioned across the aortic valve into the left ventricle. The device actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. A magnetic drive and encased motor housing allows for purgeless operation for extended periods of time to treat various ailments, for example more than six hours as acute therapy for cardiogenic shock.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Sina Gerlach, Johannes Stigloher, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Bernhard Ehni, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Ralf Strasswiemer, Uwe Vollmer, Manuel Gaertner, Fabian Eiberger, Tobias Baechle, Karin Schneider, Peter Wassermann
  • Publication number: 20220161021
    Abstract: A minimally invasive miniaturized percutaneous mechanical circulatory support system for transcatheter delivery of a pump to the heart that actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. The pump may include a tubular housing, a motor, an impeller configured to be rotated by the motor. The impeller may be rotated by the motor, via a shaft with an annular polymeric seal around the shaft, or via a magnetic drive. The system may have an insertion tool having a tubular body and configured to axially movably receive the circulatory support device, and an introducer sheath configured to axially movably receive the insertion tool.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin, Thomas Friedrich, Mario Heintze
  • Publication number: 20220161018
    Abstract: Disclosed is a mechanical circulatory support system for transcatheter delivery to the heart, having a removable guidewire aid to assist with inserting the guidewire along a path that avoids a rotating impeller. The system may comprise a catheter shaft and a circulatory support device carried by the shaft. The device may comprise a tubular housing, an impeller and the guidewire aid. The guidewire aid may include a removable guidewire guide tube. The guide tube may enter a first guidewire port of the tubular housing, exit the tubular housing via a second guidewire port on a side wall of the tubular housing on a distal side of the impeller, enter a third guidewire port on a proximal side of the impeller, and extend proximally through the catheter shaft.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin
  • Publication number: 20220032036
    Abstract: The invention relates to a device (150) for monitoring the state of health of a patient (100), wherein the device (150) comprises an input interface (160) for inputting a first pressure signal (145) and a second pressure signal (155) and a processing unit (165) for processing the first pressure signal (145) and the second pressure signal (155) in order to determine a processing value (170) in order to monitor the state of health of the patient (100) based the processing value (170).
    Type: Application
    Filed: August 7, 2019
    Publication date: February 3, 2022
    Inventors: Hardy Baumbach, Julian Kassel, Tjalf Pirk, Inga Schellenberg, Martina Budde, Thomas Alexander Schlebusch
  • Publication number: 20210378523
    Abstract: The invention relates to a sensor unit (100) for an implant system for medical support of a patient, wherein the sensor unit (100) comprises a carrier material (110) in which a recess (120) is formed and, furthermore, the sensor unit (100) comprises a semiconductor component (130) for forming a sensor, wherein the semiconductor component (130) is arranged in the recess (120) and, lastly, the sensor unit (100) comprises a substrate layer (140), which covers at least partially the recess (120) and/or comprises an opening (150) on at least one side of the sensor unit (110), as well as a diffusion barrier, by means of which at least the semiconductor component (130) is at least partially covered or coated in order to ensure a medium access (150) to the sensor.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 9, 2021
    Inventors: Martina Budde, Thomas Alexander Schlebusch, Julian Kassel
  • Publication number: 20210346674
    Abstract: The invention relates to a method for determining a fluid volume flow (1) through an implanted vascular support system (2), comprising the following steps: a) determining a fluid temperature parameter in the region of a cannula (4) of the support system (2), b) operating a heating element (5) which can bring about a change in a fluid temperature in the cannula (4), c) determining the fluid volume flow (1) using at least the fluid temperature parameter or the change thereof and at least one heating element operating parameter or the change thereof. The invention also relates to a vascular support system.
    Type: Application
    Filed: June 6, 2019
    Publication date: November 11, 2021
    Inventors: Hardy Baumbach, Julian Kassel, Inga Schellenberg, Martina Budde, Thomas Alexander Schlebusch
  • Publication number: 20210346678
    Abstract: The invention relates to a method for detecting a state of wear of a cardiac support system. The method comprises a read-in step and a determination step. During the read-in step, a sensor signal (315) representing an operating state of the cardiac support system is read in. During the determination step, a wear signal (325) is determined using the sensor signal (315) and a comparison rule (320). The wear signal (325) represents the wear condition.
    Type: Application
    Filed: June 21, 2019
    Publication date: November 11, 2021
    Inventors: Hardy Baumbach, Julian Kassel, Inga Schellenberg, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Martina Budde, Thomas Alexander Schlebusch
  • Publication number: 20210339004
    Abstract: The invention relates to a line device (105) for a ventricular assist system (100), wherein the line device (105) comprises a guide cannula (145), which is structured at least partially along a direction of extent; and, furthermore, the line device (105) comprises an electrical conducting element (145), which is arranged in the guide cannula (140), wherein the electrical conducting element (145) comprises a multilayer structure.
    Type: Application
    Filed: June 6, 2019
    Publication date: November 4, 2021
    Inventors: Thomas Alexander Schlebusch, David Minzenmay, Julian Kassel, Tobias Baechle
  • Publication number: 20210316133
    Abstract: The invention relates to a motor housing module (110) for sealing a motor compartment of a motor of a heart support system. The motor housing module (110) has at least one feed-through portion (205), at least one feed-through line (210), and at least one contact pin (215). The feed-through portion (205) is designed to establish an electrical connection between the heart support system and a connection cable in order to externally contact the heart support system. The at least one feed-through line (210) is embedded in the feed-through portion (205) and extends through the feed-through portion (205). The feed-through line (210) can be connected to the motor and to the connection cable. A first end of the at least one contact pin (215) is embedded in the feed-through portion (205) and a second end of the contact pin (215) projects from the feed-through portion (205) on a side facing away from the motor compartment.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 14, 2021
    Inventors: Julian Kassel, David Minzenmay, Thomas Alexander Schlebusch
  • Publication number: 20210290929
    Abstract: The invention relates to an electronics module (102) for a ventricular assist device, wherein the ventricular assist device has a motor housing for accommodating a pump motor. The electronics module (102) comprises an electronics section (204) for accommodating at least one electronic component (206) and/or at least one electrically conductive contacting element (208), and a coupling section (202) designed as a joint between the motor housing (104) and the electronics section (204) or as a separate component to be joined, wherein the motor housing (104) and the electronics section (204) are combined or can be combined via the coupling section (202) with one another to form a fluid-tight module housing (104) to be arranged in a blood vessel.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 23, 2021
    Inventors: Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch
  • Publication number: 20210290087
    Abstract: The invention relates to a sensor head device (105) for a heart support system, wherein the sensor head device (105) has at least one sensor carrying element (205), wherein the sensor carrying element (205) has at least one sensor cavity (155, 210) for accommodating at least one sensor (215, 220) and/or at least one signal transmitter cavity (225, 230) for accommodating at least one signal transmitter (235).
    Type: Application
    Filed: June 6, 2019
    Publication date: September 23, 2021
    Inventors: Thomas Alexander Schlebusch, Julian Kassel
  • Publication number: 20210290930
    Abstract: An intravascular blood pump (100) comprises a tip (110), a first region (120) with at least one blood through-opening (121), a flow cannula (130), a second region (140) with at least one blood through-opening (141), a motor-operated pump mechanism (150) and a conducting cable (170). At least in the region of the flow cannula (130), at least one electrical conductor track is realized by a surface coating structure.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 23, 2021
    Inventors: Julian Kassel, Thomas Alexander Schlebusch
  • Publication number: 20210053052
    Abstract: A microfluidic device for processing a liquid in ludes at least one pneumatic substrate with a pneumatic cavity and a fluidic substrate with a fluidic cavity for accommodating the liquid. The fluidic cavity is arranged opposite the pneumatic cavity. In addition, the microfluidic device has a flexible membrane which is arranged between the pneumatic substrate and the fluidic substrate. The flexible membrane is designed to fluidically separate, from one another, a fluidic chamber extending at least in part in the fluidic cavity and a pneumatic chamber extending at least in part in the pneumatic cavity. The microfluidic device further includes a first pneumatic channel for applying a first pneumatic pressure to the pneumatic chamber and a second pneumatic channel for applying a second pneumatic pressure to the pneumatic chamber.
    Type: Application
    Filed: March 22, 2019
    Publication date: February 25, 2021
    Inventors: Julian Kassel, Christian Dorrer, Daniel Czurratis