Patents by Inventor Julian Krebs

Julian Krebs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9931790
    Abstract: A method and system for transcatheter aortic valve implantation (TAVI) planning is disclosed. An anatomical surface model of the aortic valve is estimated from medical image data of a patient. Calcified lesions within the aortic valve are segmented in the medical image data. A combined volumetric model of the aortic valve and calcified lesions is generated. A 3D printed model of the heart valve and calcified lesions is created using a 3D printer. Different implant device types and sizes can be placed into the 3D printed model of the aortic valve and calcified lesions to select an implant device type and size for the patient for a TAVI procedure. The method can be similarly applied to other heart valves for any type of heart valve intervention planning.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: April 3, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Sasa Grbic, Razvan Ionasec, Tommaso Mansi, Ingmar Voigt, Dominik Neumann, Julian Krebs, Chris Schwemmer, Max Schoebinger, Helene C. Houle, Dorin Comaniciu, Joel Mancina
  • Patent number: 9848856
    Abstract: In valve modeling from medical scan data, chordae are modeled as a dense structure. Rather than attempting to provide the same number of chordae (e.g., 25) as found in a human valve, hundreds or thousands of chordae connectors are used. Since solving for lengths of so many chordae may be computationally intensive, the lengths of only a few are solved, and the lengths of the rest of the chordae are derived from the lengths of the few.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: December 26, 2017
    Assignee: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Sasa Grbic, Tommaso Mansi, Ingmar Voigt, Julian Krebs
  • Publication number: 20170337682
    Abstract: Methods and systems for image registration using an intelligent artificial agent are disclosed. In an intelligent artificial agent based registration method, a current state observation of an artificial agent is determined based on the medical images to be registered and current transformation parameters. Action-values are calculated for a plurality of actions available to the artificial agent based on the current state observation using a machine learning based model, such as a trained deep neural network (DNN). The actions correspond to predetermined adjustments of the transformation parameters. An action having a highest action-value is selected from the plurality of actions and the transformation parameters are adjusted by the predetermined adjustment corresponding to the selected action. The determining, calculating, and selecting steps are repeated for a plurality of iterations, and the medical images are registered using final transformation parameters resulting from the plurality of iterations.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 23, 2017
    Inventors: Rui Liao, Shun Miao, Pierre de Tournemire, Julian Krebs, Li Zhang, Bogdan Georgescu, Sasa Grbic, Florin Cristian Ghesu, Vivek Kumar Singh, Daguang Xu, Tommaso Mansi, Ali Kamen, Dorin Comaniciu
  • Publication number: 20160303804
    Abstract: A method and system for transcatheter aortic valve implantation (TAVI) planning is disclosed. An anatomical surface model of the aortic valve is estimated from medical image data of a patient. Calcified lesions within the aortic valve are segmented in the medical image data. A combined volumetric model of the aortic valve and calcified lesions is generated. A 3D printed model of the heart valve and calcified lesions is created using a 3D printer. Different implant device types and sizes can be placed into the 3D printed model of the aortic valve and calcified lesions to select an implant device type and size for the patient for a TAVI procedure. The method can be similarly applied to other heart valves for any type of heart valve intervention planning.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Sasa Grbic, Razvan Ionasec, Tommaso Mansi, Ingmar Voigt, Dominik Neumann, Julian Krebs, Chris Schwemmer, Max Schoebinger, Helene C. Houle, Dorin Comaniciu, Joel Mancina
  • Publication number: 20160171766
    Abstract: In valve modeling from medical scan data, chordae are modeled as a dense structure. Rather than attempting to provide the same number of chordae (e.g., 25) as found in a human valve, hundreds or thousands of chordae connectors are used. Since solving for lengths of so many chordae may be computationally intensive, the lengths of only a few are solved, and the lengths of the rest of the chordae are derived from the lengths of the few.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 16, 2016
    Inventors: Sasa Grbic, Tommaso Mansi, Ingmar Voigt, Julian Krebs