Patents by Inventor Julian S. Brody

Julian S. Brody has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220130058
    Abstract: A tracking system for a target flight vehicle includes at least two sensor nodes that are positioned at geographically diverse locations relative to a launch site from which the target flight vehicle is launched. The sensor nodes have a lens and a visible camera that captures images of an anticipated launch trajectory for the target flight vehicle. The sensor nodes determine position data for the target flight vehicle including timing, azimuth, and elevation based on the captured images. A fusion processing engine is communicatively coupled to the at least two sensor nodes for receiving and integrating the position data. The data is integrated to determine real-time state vectors including a velocity and a three-dimensional position for the target flight vehicle. The state vectors are sent to a range network that is configured to implement a flight termination system for the target flight vehicle based on the state vectors.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Chia Y. Chang, Caprice A. Wilbur, Robert K. Pina, Julian S. Brody
  • Patent number: 10527705
    Abstract: System and method for determining a position of a target in an unbiased 3D measurement space: generating 2D measurement data in focal planes of each sensor; calculating a line of sight (LOS) from the target for each sensor; intersecting the LOSs and finding the closest intersection point in a 3D space; calculating a boresight LOS in 3D for each sensor; intersecting the boresight lines of sights for each sensor, and finding the closest intersection point in the 3D space to define an origin for forming the unbiased 3D measurement space; and forming local unbiased 3D estimates of the position of the target in the unbiased 3D measurement space as a difference between a closest point of the target LOS and a closest point of the boresight LOS.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 7, 2020
    Assignee: Raytheon Company
    Inventors: Valeri I. Karlov, Julian S. Brody, John D. Hulsmann
  • Patent number: 10371784
    Abstract: System and method for determining a position of a target in an unbiased 3D measurement space: generating 2D measurement data in focal planes of each sensor; calculating a line of sight (LOS) from the target for each sensor; intersecting the LOSs and finding the closest intersection point in a 3D space; calculating a boresight LOS in 3D for each sensor; intersecting the boresight lines of sights for each sensor, and finding the closest intersection point in the 3D space to define an origin for forming the unbiased 3D measurement space; and forming local unbiased 3D estimates of the position of the target in the unbiased 3D measurement space as a difference between a closest point of the target LOS and a closest point of the boresight LOS.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 6, 2019
    Assignee: RAYTHEON COMPANY
    Inventors: Valeri I. Karlov, Julian S. Brody, John D. Hulsmann
  • Publication number: 20190235043
    Abstract: System and method for determining a position of a target in an unbiased 3D measurement space: generating 2D measurement data in focal planes of each sensor; calculating a line of sight (LOS) from the target for each sensor; intersecting the LOSs and finding the closest intersection point in a 3D space; calculating a boresight LOS in 3D for each sensor; intersecting the boresight lines of sights for each sensor, and finding the closest intersection point in the 3D space to define an origin for forming the unbiased 3D measurement space; and forming local unbiased 3D estimates of the position of the target in the unbiased 3D measurement space as a difference between a closest point of the target LOS and a closest point of the boresight LOS.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Valeri I. Karlov, Julian S. Brody, John D. Hulsmann
  • Publication number: 20170350956
    Abstract: System and method for determining a position of a target in an unbiased 3D measurement space: generating 2D measurement data in focal planes of each sensor; calculating a line of sight (LOS) from the target for each sensor; intersecting the LOSs and finding the closest intersection point in a 3D space; calculating a boresight LOS in 3D for each sensor; intersecting the boresight lines of sights for each sensor, and finding the closest intersection point in the 3D space to define an origin for forming the unbiased 3D measurement space; and forming local unbiased 3D estimates of the position of the target in the unbiased 3D measurement space as a difference between a closest point of the target LOS and a closest point of the boresight LOS.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: Valeri I. Karlov, Julian S. Brody, John D. Hulsmann