Patents by Inventor Julianna C. Simon

Julianna C. Simon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9498651
    Abstract: The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 22, 2016
    Assignee: University of Washington
    Inventors: Oleg A. Sapozhnikov, Michael R. Bailey, Lawrence A. Crum, Tatiana D. Khokhlova, Vera A. Khokhlova, Julianna C. Simon, Yak-Nam Wang
  • Publication number: 20120259250
    Abstract: The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 11, 2012
    Applicant: University of Washington
    Inventors: Oleg A. Sapozhnikov, Michael R. Bailey, Lawrence A. Crum, Tatiana D. Khokhlova, Vera A. Khokhlova, Julianna C. Simon, Yak-Nam Wang