Patents by Inventor Julie A. Kelly

Julie A. Kelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11984196
    Abstract: Disclosed are techniques for characterizing variants of interest and predicting assignments of individuals to communities based on obtained genetic information. To characterize a variant, DNA datasets of reference individuals are accessed and used to generate a cluster with additional individuals. Reference individuals carry a variant at a genetic locus and the additional individuals share IBD with reference individuals. Statistics of genealogical data of the cluster are generated. A result summarizing the characterization of the variant is generated based on the statistics. To determine if an individual belongs to a community, a subset of the individual's haplotypes are inputted into a community-specific model. The model is trained using the training samples that each include haplotypes of reference individuals and a label identifying whether the reference individual belongs to the community. Based on the output of the model, it is determined whether the individual is a member of the community.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: May 14, 2024
    Assignee: ANCESTRY.COM DNA, LLC
    Inventors: Jake Kelly Byrnes, Julie M. Granka, Shannon Hateley, Ladan Doroud
  • Publication number: 20230173333
    Abstract: Examples of an exercise mat and methods for making same are disclosed. The exercise mat comprises a top layer, at least two textured gripping zones formed on an upper surface of the top layer and a bottom layer joined to the top layer. A second textured gripping zone of the at least two textured gripping zones may be formed closer to one or more mat edges of the exercise mat, and has a friction level that is greater than a friction level of a first textured gripping zone of the at least two textured gripping zones, when a body is in sliding contact with the at least two textured gripping zones of the upper surface of the top layer.
    Type: Application
    Filed: November 29, 2022
    Publication date: June 8, 2023
    Inventors: Colton Kai YU, Laura Julie KELLY, Miguel Angel HERRERA MACIAS, Josh Nehru Samonte Delfin, Kate Alexandria MACMILLAN, Adrian Ka Ming LAI, Jemon LIN
  • Patent number: 9873717
    Abstract: The invention relates to a novel thyrotropin releasing hormone (TRH) receptor subtype in human central nervous system (CNS) that is pharmacologically distinct from the TRH receptor subtype in human pituitary. The invention provides a means to understand how the central actions of TRH are mediated and to isolate and characterize the novel receptor, as well as methods applicable to research and development of diagnostic and therapeutic applications in human CNS disorders.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: January 23, 2018
    Assignee: THE PROVOST, FELLOWS, FOUNDATION SCHOLARS, AND THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEEN ELIZABETH, NEAR DUBLIN
    Inventor: Julie Kelly
  • Patent number: 9506074
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 29, 2016
    Assignee: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20150361136
    Abstract: The invention relates to a novel thyrotropin releasing hormone (TRH) receptor subtype in human central nervous system (CNS) that is pharmacologically distinct from the TRH receptor subtype in human pituitary. The invention provides a means to understand how the central actions of TRH are mediated and to isolate and characterise the novel receptor, as well as methods applicable to research and development of diagnostic and therapeutic applications in human CNS disorders.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 17, 2015
    Inventor: Julie Kelly
  • Publication number: 20140212953
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: September 19, 2013
    Publication date: July 31, 2014
    Applicant: GEVO, Inc.
    Inventors: Thomas BUELTER, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Kent Evans, Julie Kelly, Ruth Berry
  • Patent number: 8158404
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 17, 2012
    Assignee: Gevo, Inc.
    Inventors: Doug Lies, Stephanie Porter-Scheinman, Julie Kelly, Catherine Asleson Dundon, Aristos Aristidou, Andrew Hawkins
  • Patent number: 8153415
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 10, 2012
    Assignee: Gevo, Inc.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Patent number: 8133715
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: March 13, 2012
    Assignee: Gevo, Inc.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20110275129
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 29, 2011
    Publication date: November 10, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20110236942
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 30, 2011
    Publication date: September 29, 2011
    Applicant: GEVO, INC.
    Inventors: Andrew Hawkins, Stephanie Porter-Scheinman, Catherine Asleson Dundon, Aristos Aristidou, Doug Lies, Julie Kelly
  • Publication number: 20110201090
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 18, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Kent Evans, Julie Kelly, Ruth Berry
  • Publication number: 20110201073
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 31, 2011
    Publication date: August 18, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Patent number: 7713935
    Abstract: The invention relates to compounds that inhibit thyrotropin-releasing hormone (TRH) degrading ectoenzyme and/or enhance, and/or mimic the biological actions of TRH. The compounds find therapeutic application, particularly in conditions involving neuronal cell injury and disturbances in neurobiological function.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: May 11, 2010
    Assignee: The Provost, Fellows and Scholars of The College of The Holy and Undivided Trinity of Queen Elizabeth Near Dublin
    Inventor: Julie Kelly
  • Patent number: 7378397
    Abstract: Peptide derivatives useful as inhibitors of activity of thyrotropin-releasing hormone-degrading ectoenzyme (TRH-DE) are of formula Ia: wherein: R1 is an optionally substituted 4-, 5- or 6-membered heterocyclic ring having one or more heteroatoms, in which at least one carbon atom of the ring is substituted with O or S; X1 is —CO— or —CS— or —CH2CO— or CH(R4) wherein R4 is H or optionally substituted alkyl or —COOH or —COOR11 wherein R11 is optionally substituted alkyl; X2 and X3 (which may be the same or different) are —CO— or —CS—; Z is —CH2— or —S— or —O— or —NH—; Q is O or S; R2 is H or optionally substituted alkyl or an optionally substituted carbocyclic ring; R3 is H or optionally substituted alkyl or an optionally substituted mono- or polycyclic ring, optionally having one or more heteroatoms in the ring(s) and optionally being a fused ring; or R2 and R3 together form an optionally substituted mono- or polycyclic ring optionally having one or more heteroatoms in the ring(s) and optionally being a
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: May 27, 2008
    Assignee: The Provost, Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin
    Inventor: Julie A. Kelly
  • Publication number: 20070265202
    Abstract: The invention relates to compounds that inhibit thyrotropin-releasing hormone (TRH) degrading ectoenzyme and/or enhance, and/or mimic the biological actions of TRH. The compounds find therapeutic application, particularly in conditions involving neuronal cell injury and disturbances in neurobiological function.
    Type: Application
    Filed: October 3, 2005
    Publication date: November 15, 2007
    Applicant: THE PROVOST, FELLOWS AND SCHOLARS OF THE COLLEGE O
    Inventor: Julie Kelly
  • Publication number: 20060293247
    Abstract: Peptide derivatives useful as inhibitors of activity of thyrotropin-releasing hormone-degrading ectoenzyme (TRH-DE) are of formula Ia: wherein: R1 is an optionally substituted 4-, 5- or 6-membered heterocyclic ring having one or more heteroatoms, in which at least one carbon atom of the ring is substituted with O or S; X1 is —CO— or —CS— or —CH2CO— or CH(R4) wherein R4 is H or optionally substituted alkyl or —COOH or —COOR11 wherein R11 is optionally substituted alkyl; X2 and X3 (which may be the same or different) are —CO— or —CS—; Z is —CH2— or —S—or —O— or —NH—; Q is O or S; R2 is H or optionally substituted alkyl or an optionally substituted carbocyclic ring; R3 is H or optionally substituted alkyl or an optionally substituted mono- or polycyclic ring, optionally having one or more heteroatoms in the ring(s) and optionally being a fused ring; or R2 and R3 together form an optionally substituted mono- or polycyclic ring optionally having one or more heteroatoms in the ring(s) and optionally being
    Type: Application
    Filed: February 1, 2006
    Publication date: December 28, 2006
    Applicants: Elizabeth Near Dublin
    Inventor: Julie Kelly
  • Publication number: 20030166944
    Abstract: Peptide derivatives useful as inhibitors of activity of thyrotropin-releasing hormone-degrading ectoenzyme (TRH-DE) disclosed.
    Type: Application
    Filed: August 19, 2002
    Publication date: September 4, 2003
    Applicant: The Provost, Fellows and Scholars of the College of th Holy
    Inventor: Julie A. Kelly