Patents by Inventor Julie C. Lee

Julie C. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140141438
    Abstract: A microfluidic device may include a sample distribution network including a plurality of sample chambers configured to be loaded with biological sample for biological testing of the biological sample while in the sample chambers, the biological sample having a meniscus that moves within the sample chambers during loading. The sample distribution network may further include a plurality of inlet channels, each inlet channel being in flow communication with and configured to flow biological sample to a respective sample chamber, and a plurality of outlet channels, each outlet channel being in flow communication and configured to flow biological sample from a respective sample chamber. At least some of the sample chambers may include a physical modification configured to control the movement of the meniscus so as to control bubble formation within the at least some sample chambers.
    Type: Application
    Filed: October 15, 2013
    Publication date: May 22, 2014
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: Maengseok Song, Joon Mo Yang, Julie C. Lee, Nigel P. Beard, Yuh-Min Chiang, Roy H. Tan, Carol Schembri
  • Publication number: 20070280856
    Abstract: A microfluidic device may include a sample distribution network including a plurality of sample chambers configured to be loaded with biological sample for biological testing of the biological sample while in the sample chambers, the biological sample having a meniscus that moves within the sample chambers during loading. The sample distribution network may further include a plurality of inlet channels, each inlet channel being in flow communication with and configured to flow biological sample to a respective sample chamber, and a plurality of outlet channels, each outlet channel being in flow communication and configured to flow biological sample from a respective sample chamber. At least some of the sample chambers may include a physical modification configured to control the movement of the meniscus so as to control bubble formation within the at least some sample chambers.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicant: APPLERA CORPORATION
    Inventors: Umberto Ulmanella, Eric S. Nordman, Maengseok Song, Joon Mo Yang, Julie C. Lee, Nigel P. Beard, Min Yue, Carol Schembri, David Liu
  • Publication number: 20070280857
    Abstract: A microfluidic device may include a sample distribution network including a plurality of sample chambers configured to be loaded with biological sample for biological testing of the biological sample while in the sample chambers, the biological sample having a meniscus that moves within the sample chambers during loading. The sample distribution network may further include a plurality of inlet channels, each inlet channel being in flow communication with and configured to flow biological sample to a respective sample chamber, and a plurality of outlet channels, each outlet channel being in flow communication and configured to flow biological sample from a respective sample chamber. At least some of the sample chambers may include a physical modification configured to control the movement of the meniscus so as to control bubble formation within the at least some sample chambers.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicant: APPLERA CORPORATION
    Inventors: Maengseok Song, Joon Mo Yang, Julie C. Lee, Nigel P. Beard, Yuh-Min Chiang, Roy H. Tan, Carol Schembri