Patents by Inventor Julie Chabot

Julie Chabot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7938954
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system, in an amount ranging between 3 to 50 wt. % of the heavy oil feedstock.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: May 10, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang, Bruce Reynolds
  • Patent number: 7935243
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein the first contacting zone is operated at a temperature of at least 10° F. lower than a next contacting zone. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and, optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: May 3, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Patent number: 7931796
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones with at least some of the fresh slurry catalyst being supplied to at least a contacting zone other than the first contacting zone. The contacting zones operate under hydrocracking conditions, employing the slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. A least a portion of the non-volatile fractions recovered from the separation zones is recycled back to the first contacting zone in the system.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: April 26, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Kaidong Chen, Bruce Reynolds
  • Patent number: 7931797
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. In the once-through upgrade system, little if any of the unconverted material and slurry catalyst mixture is recycled back to the system for further upgrading. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. The slurry catalyst feed comprises an active metal catalyst having an average particle size of at least 1 micron in a hydrocarbon oil diluent, at a concentration of greater than 500 wppm of active metal catalyst to heavy oil feedstock.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: April 26, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Shuwu Yang, Bruce Reynolds
  • Patent number: 7897035
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones with at least some of the heavy oil feedstock being supplied to at least a contacting zone other than the first contacting zone. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventor: Julie Chabot
  • Patent number: 7897036
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein water and/or steam being injected into first contacting zone in an amount of 1 to 25 weight % on the weight of the heavy oil feedstock. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 1, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Publication number: 20110017637
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and separation zones in sequential mode, parallel mode, or combinations thereof to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. In one embodiment, the effluent stream from the contacting zone is sent to a separation zone in series operating at a pressure drop of at most 100 psi from the contacting zone. In another embodiment, the effluent from a contacting zone to the next contacting zone in series for further upgrade, with the next contacting zone having a pressure drop of at most 100 psi, with the pressure drop is not due to a pressure reducing device as in the prior art.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Inventors: Bruce Reynolds, Julie Chabot
  • Publication number: 20110017636
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. At least an additive material selected from inhibitor additives, anti-foam agents, stabilizers, metal scavengers, metal contaminant removers, metal passivators, and sacrificial materials, in an amount of less than 1 wt. % of the heavy oil feedstock, is added to at least one of the contacting zones. In one embodiment, the additive material is an anti-foam agent. In another embodiment, the additive material is a sacrificial material for trapping heavy metals in the heavy oil feed and/or deposited coke, thus prolonging the life of the slurry catalyst.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Inventors: Joseph V. Nguyen, Bo Kou, Julie Chabot, Erin Maris, Axel Brait, Rahul S. Bhaduri, Alexander E. Kuperman
  • Publication number: 20110017635
    Abstract: A process for hydroprocessing heavy oil feedstock is disclosed. The process operates in once-through mode, employing a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. In the once-through upgrade system, little if any of the unconverted material and slurry catalyst mixture is recycled back to the system for further upgrading. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock. The slurry catalyst feed comprises an active metal catalyst having an average particle size of at least 1 micron in a hydrocarbon oil diluent, at a concentration of greater than 500 wppm of active metal catalyst to heavy oil feedstock.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Inventors: Julie Chabot, Shuwu Yang, Bruce Reynolds
  • Publication number: 20100065471
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones with at least some of the fresh slurry catalyst being supplied to at least a contacting zone other than the first contacting zone. The contacting zones operate under hydrocracking conditions, employing the slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. A least a portion of the non-volatile fractions recovered from the separation zones is recycled back to the first contacting zone in the system.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Julie Chabot, Kaidong Chen, Bruce Reynolds
  • Publication number: 20100065474
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein the first contacting zone is operated at a temperature of at least 10° F. lower than a next contacting zone. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Publication number: 20100065473
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products, wherein water and/or steam being injected into first contacting zone in an amount of 1 to 25 weight % on the weight of the heavy oil feedstock. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang
  • Publication number: 20100065472
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones with at least some of the heavy oil feedstock being supplied to at least a contacting zone other than the first contacting zone. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventor: Julie Chabot
  • Publication number: 20090050526
    Abstract: The instant invention is directed to a process employing slurry catalyst compositions in the upgrading of heavy oils. The slurry catalyst composition is not permitted to settle, which would result in possible deactivation. The slurry is recycled to an upgrading reactor for repeated use and products require no further separation procedures for catalyst removal.
    Type: Application
    Filed: September 18, 2008
    Publication date: February 26, 2009
    Inventors: Kaidong Chen, Julie Chabot
  • Publication number: 20090008291
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock with reduced heavy oil deposits, the system employs a plurality of contacting zones and separation zones zone under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to the first contacting zone in the system, in an amount ranging between 3 to 50 wt. % of the heavy oil feedstock.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 8, 2009
    Inventors: Julie Chabot, Bo Kou, Vivion Andrew Brennan, Erin Maris, Shuwu Yang, Bruce Reynolds
  • Patent number: 7431824
    Abstract: The instant invention is directed to a process employing slurry catalyst compositions in the upgrading of heavy oils. The slurry catalyst composition is not permitted to settle, which would result in possible deactivation. The slurry is recycled to an upgrading reactor for repeated use and products require no further separation procedures for catalyst removal.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kaidong Chen, Julie Chabot
  • Patent number: 7214309
    Abstract: The instant invention is directed to a process for upgrading heavy oils using a slurry composition. The slurry composition is prepared in a series of steps, involving mixing a Group VIB metal oxide with aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal compound. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 8, 2007
    Assignee: Chevron U.S.A. Inc
    Inventors: Kaidong Chen, Pak C. Leung, Bruce E. Reynolds, Julie Chabot
  • Publication number: 20060054533
    Abstract: The instant invention is directed to a process employing slurry catalyst compositions in the upgrading of heavy oils. The slurry catalyst composition is not permitted to settle, which would result in possible deactivation. The slurry is recycled to an upgrading reactor for repeated use and products require no further separation procedures for catalyst removal.
    Type: Application
    Filed: September 10, 2004
    Publication date: March 16, 2006
    Inventors: Kaidong Chen, Julie Chabot
  • Publication number: 20060054534
    Abstract: The instant invention is directed to a process for upgrading heavy oils using a slurry composition. The slurry composition is prepared in a series of steps, involving mixing a Group VIB metal oxide with aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal compound. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Application
    Filed: September 10, 2004
    Publication date: March 16, 2006
    Inventors: Kaidong Chen, Pak Leung, Bruce Reynolds, Julie Chabot
  • Publication number: 20040106516
    Abstract: A high-activity hydrotreating catalyst, having a low density, suitable for deep removal of sulfur, nitrogen, micro-carbon residue and organometallic contaminants from hydrocarbon feedstocks is disclosed. Further disclosed is a method of preparation of this catalyst, which may contain 0.3-10 wt % of a Group IVB metal promoter, 5-25 wt % of a Group VIB metal component, and 1-8 wt % of a Group VIII metal, along with a method of hydrotreating employing this catalyst.
    Type: Application
    Filed: December 3, 2002
    Publication date: June 3, 2004
    Inventors: Lawrence E. Schulz, Kirk R. Gibson, Julie Chabot, Bruno C. Nesci