Patents by Inventor Julie Irene Marcelle Bernauer

Julie Irene Marcelle Bernauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121158
    Abstract: Apparatuses, systems, and methods are provided for scalable networking systems. An example system includes a plurality of core switches and a first stage patch panel associated with operation of a first set of network ports. In an operational configuration in which the first stage patch panel is coupled with the plurality of core switches, the first stage patch panel is configured to operatively couple the first set of network ports and a first portion of the plurality of core switches such that signals may pass therebetween. Furthermore, the first stage patch panel may preclude communication to a remaining portion of the plurality of core switches. The system may include a second stage patch panel associated with a second set of network ports that is operatively coupled with the plurality of core switches in the absence of the first stage patch panel so as to scale the networking system.
    Type: Application
    Filed: November 10, 2022
    Publication date: April 11, 2024
    Inventors: Paraskevas Bakopoulos, Dimitrios Kalavrouziotis, Nikolaos Argyris, Ioannis (Giannis) Patronas, Elad Mentovich, Eitan Zahavi, Prethvi Ramesh Kashinkunti, Louis Bennie Capps, JR., Julie Irene Marcelle Bernauer, James Steven Fields, JR.
  • Publication number: 20240113943
    Abstract: Systems, computer program products, and methods are described herein for dynamic reconfiguration of network communications. An example system includes a first network pod including a first set of network ports, a second network pod including a second set of network ports, a set of network cores, and a first intermediate network switch. The first intermediate switch operatively couples the first network pod, the second network pod, and the set of network cores. The first intermediate network switch is configured to selectively establish full bisectional bandwidth data communication between a subset of the set of network cores, a subset of the first set of network ports, and a subset of the second set of network ports.
    Type: Application
    Filed: October 12, 2022
    Publication date: April 4, 2024
    Applicant: Mellanox Technologies, Ltd.
    Inventors: Ioannis (Giannis) PATRONAS, Paraskevas BAKOPOULOS, Dimitrios SYRIVELIS, Elad MENTOVICH, Eitan ZAHAVI, Louis Bennie CAPPS, Jr., Prethvi Ramesh KASHINKUNTI, Julie Irene Marcelle BERNAUER, Nikolaos TERZENIDIS
  • Publication number: 20240098039
    Abstract: Systems and methods for resilience in network communications are provided. An example system includes a first network port pair including a first input network port and a first output network port. The system further includes an intermediate switch configured to communicably connect the first input network port and the first output network port and a first redundant network port communicably connected with the intermediate switch. The intermediate switch establishes communication between the first input network port and the first redundant network port in an instance in which the intermediate switch receives an indication of a malfunction associated with the first output network port or establishes communication between the first output network port and the first redundant network port in an instance in which the intermediate switch receives an indication of a malfunction associated with the first input network port.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 21, 2024
    Inventors: Ioannis (Giannis) Patronas, Paraskevas Bakopoulos, Dimitrios Syrivelis, Nikolaos Argyris, Elad Mentovich, Louis Bennie Capps, JR., Prethvi Ramesh Kashinkunti, Julie Irene Marcelle Bernauer, Eitan Zahavi
  • Publication number: 20240098040
    Abstract: Systems, apparatuses, and methods are provided for resilience in network communications. An example system includes at least one first network port including a first plurality of subports and at least one second network port including a second plurality of subports. The system also includes an intermediate switch communicably connected to the at least one first network port and the at least one second network port. At least one of the first plurality of subports includes at least one first offline subport that is inoperable in an instance in which each of the remaining first plurality of subports are operable. The intermediate switch is configured to route communication from one of the second plurality of subports to the at least one first offline subport in an instance in which the intermediate switch receives an indication of a malfunction associated with the first plurality of subports.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 21, 2024
    Inventors: Ioannis (Giannis) Patronas, Paraskevas Bakopoulos, Dimitrios Syrivelis, Nikolaos Argyris, Elad Mentovich, Louis Bennie Capps, JR., Prethvi Ramesh Kashinkunti, Julie Irene Marcelle Bernauer, Eitan Zahavi
  • Publication number: 20240039627
    Abstract: Systems, computer program products, and methods are described herein for network discovery, port identification, and/or identifying fiber link failures in an optical network, in accordance with an embodiment of the invention. The present invention may be configured to sequentially connect each port of an optical switch to a network port of a server and generate, based on information associated with network devices connected to the ports, a network map. The network map may identify which network devices are connected to which ports of the optical switch and may permit dynamic port mapping for network installation, upgrades, repairs, and/or the like. The present invention may also be configured to determine a fiber link in which a failure occurred and reconfigure the optical switch to allow communication between an optical time-domain reflectometer and the fiber link to test the fiber link.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 1, 2024
    Inventors: Paraskevas Bakopoulos, Konstantinos Tokas, Ioannis (Giannis) Patronas, Nikolaos Argyris, Dimitrios Syrivelis, Dimitrios Kalavrouziotis, Elad Mentovich, Eitan Zahavi, Louis Bennie Capps, JR., Prethvi Ramesh Kashinkunti, Julie Irene Marcelle Bernauer