Patents by Inventor Julie L. Rosales

Julie L. Rosales has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11225681
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 18, 2022
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Publication number: 20200407677
    Abstract: A system and method with increased sensitivity to microorganism growth. The system includes signal processing electronic circuit connected to a consumable or vessel through two or more electrodes that fully penetrate the vessel and are in contact with the fluid contents. The electronic circuit is configured to detect a component of the total impedance of the sample, specifically the “out-of-phase” or imaginary reactance component, which has a sensitive response to organism growth in a frequency-dependent manner. The system detects changes in both the composition of charged molecules in the liquid matrix and the number of microorganisms based on monitoring the sample for change in this parameter. This results in a 5-70% reduction in time-to-detection (TTD). The system and method detect organisms in a plurality of vessel shapes, volumes, and matrix (or media) formats. The electrodes are fully immersed in a continuous body of liquid sample.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Patrick Shawn Beaty, Michael A. Brasch, Suneil Hosmane, David Polley, Julie L. Rosales, Kerry Lynn Smith
  • Patent number: 10808217
    Abstract: A system and method with increased sensitivity to microorganism growth. The system includes signal processing electronic circuit connected to a consumable or vessel through two or more electrodes that fully penetrate the vessel and are in contact with the fluid contents. The electronic circuit is configured to detect a component of the total impedance of the sample, specifically the “out-of-phase” or imaginary reactance component, which has a sensitive response to organism growth in a frequency-dependent manner. The system detects changes in both the composition of charged molecules in the liquid matrix and the number of microorganisms based on monitoring the sample for change in this parameter. This results in a 5-70% reduction in time-to-detection (TTD). The system and method detect organisms in a plurality of vessel shapes, volumes, and matrix (or media) formats. The electrodes are fully immersed in a continuous body of liquid sample.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: October 20, 2020
    Assignee: BECTON DICKINSON AND COMPANY
    Inventors: Patrick Shawn Beaty, Michael A. Brasch, Suneil Hosmane, David Polley, Julie L. Rosales, Kerry Lynn Smith
  • Publication number: 20200087702
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 19, 2020
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Patent number: 10519482
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 31, 2019
    Assignee: Becton, Dickinson And Company
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Patent number: 9995745
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: June 12, 2018
    Assignees: Arbor Vita Corporation, Becton, Dickinson and Company
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
  • Publication number: 20170240855
    Abstract: A system and method with increased sensitivity to microorganism growth. The system includes signal processing electronic circuit connected to a consumable or vessel through two or more electrodes that fully penetrate the vessel and are in contact with the fluid contents. The electronic circuit is configured to detect a component of the total impedance of the sample, specifically the “out-of-phase” or imaginary reactance component, which has a sensitive response to organism growth in a frequency-dependent manner. The system detects changes in both the composition of charged molecules in the liquid matrix and the number of microorganisms based on monitoring the sample for change in this parameter. This results in a 5-70% reduction in time-to-detection (TTD). The system and method detect organisms in a plurality of vessel shapes, volumes, and matrix (or media) formats. The electrodes are fully immersed in a continuous body of liquid sample.
    Type: Application
    Filed: October 14, 2015
    Publication date: August 24, 2017
    Applicant: Becton, Dickinson and Company
    Inventors: Patrick Shawn Beaty, Michael A. Brasch, Suneil Hosmane, David Polley, Julie L. Rosales, Kerry Lynn Smith
  • Publication number: 20160216258
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Application
    Filed: November 4, 2015
    Publication date: July 28, 2016
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
  • Patent number: 9207240
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: December 8, 2015
    Assignee: ARBOR VITA CORPORATION
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
  • Publication number: 20150125895
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Application
    Filed: February 28, 2013
    Publication date: May 7, 2015
    Applicant: Becton, Dickinson and Company
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Publication number: 20090123910
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf