Patents by Inventor Julie Victoria MacPherson

Julie Victoria MacPherson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230053780
    Abstract: A method for forming a diamond product. Diamond material is provided and a damage layer comprising sp2 bonded carbon is formed in the material. The presence of the damage layer defines a first diamond layer above and in contact with the damage layer and a second diamond layer below and in contact with the damage layer. The damage layer is electrochemically etched to separate it from the first layer, wherein the electrochemical etching is performed in a solution containing ions, the solution having an electrical conductivity of at least 500 ?S cm?1, and wherein the ions are capable of forming radicals during electrolysis. The diamond product is also described.
    Type: Application
    Filed: March 4, 2021
    Publication date: February 23, 2023
    Applicants: Element Six Technologies Limited, University of Warwick
    Inventors: Joshua James Tully, Samuel James Cobb, Julie Victoria MacPherson, Mark Edward Newton, Matthew Lee Markham
  • Publication number: 20220181647
    Abstract: An electrode comprising synthetic high-pressure high-temperature diamond material, the diamond material comprising a substitutional boron concentration of between 1×1020 and 5×1021 atoms/cm3 and a nitrogen concentration of no more than 1019 atoms/cm3. The electrode has a ?E3/4-1/4 as measured with respect to a saturated calomel reference electrode in an aqueous solution containing 0.1 M KNO3 and 1 mM of Ru(NH3)63+ selected any of less than 70 mV, less than 68 mV, less than 66 mV, and less than 64 mV, and/or a peak to peak separation ?Ep as measured with respect to a saturated calomel reference electrode in an aqueous solution containing 0.1 M KNO3 and 1 mM of Ru(NH3)63+ selected any of less than 70 mV, less than 68 mV, less than 66 mV, and less than 64 mV.
    Type: Application
    Filed: April 6, 2020
    Publication date: June 9, 2022
    Applicants: ELEMENT SIX TECHNOLOGIES LIMITED, UNIVERSITY OF WARWICK
    Inventors: GEORGIA WOOD, TIMOTHY PETER MOLLART, JULIE VICTORIA MACPHERSON
  • Patent number: 11249042
    Abstract: An electrochemical sensor comprising a boron doped diamond electrode formed of boron doped diamond material, an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode, electrochemically active non-diamond carbon surface groups bonded to the non-diamond carbon sites for generating a first redox peak at a first potential associated with dissolved oxygen and a second redox peak at a second potential which changes with pH, the first and second redox peaks being separated such that they do not overlap, an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate at least said first redox peak, and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said first redox peak.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: February 15, 2022
    Assignee: Element Six Technologies Limited
    Inventors: Julie Victoria MacPherson, Zoe Joanna Ayres, Mark Edward Newton
  • Patent number: 11209379
    Abstract: An electrochemical sensor comprising: a boron doped diamond electrode formed of boron doped diamond material; an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode; electrochemically active surface groups bonded to the non-diamond carbon sites for generating a redox peak associated with a target species which reacts with the electrochemically active surface groups bonded to the non-diamond carbon sites when a solution containing the target species is disposed in contact with the sensing surface in use; an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate said redox peak; and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said redox peak.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 28, 2021
    Assignee: Element Six Technologies Limited
    Inventors: Laura Anne Hutton, Maxim Bruckshaw Joseph, Roy Edward Patrick Meyler, Julie Victoria Macpherson, Timothy Peter Mollart, Zoe Ayers
  • Publication number: 20210003529
    Abstract: An embodiment provides a device for measuring pH in an aqueous sample, including: at least one measurement electrode comprising a first carbon region, wherein the carbon region comprises a single pH sensitive carbon region, wherein the single pH sensitive carbon region of the measurement electrode is a sp2 carbon region of a boron doped diamond-based pH electrode; at least one reference electrode; at least one auxiliary electrode; and a memory storing instructions executable by a processor to identify a pH of an aqueous sample by measuring an electrical potential between the at least one measurement electrode and the at least one reference electrode. Other aspects are described and claimed.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 7, 2021
    Inventors: Zoë Duncan, Julie Victoria Macpherson, Samuel James Cobb
  • Publication number: 20190339220
    Abstract: An electrochemical sensor comprising a boron doped diamond electrode formed of boron doped diamond material, an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode, electrochemically active non-diamond carbon surface groups bonded to the non-diamond carbon sites for generating a first redox peak at a first potential associated with dissolved oxygen and a second redox peak at a second potential which changes with pH, the first and second redox peaks being separated such that they do not overlap, an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate at least said first redox peak, and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said first redox peak.
    Type: Application
    Filed: January 30, 2018
    Publication date: November 7, 2019
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: JULIE VICTORIA MACPHERSON, ZOE JOANNA AYRES, MARK EDWARD NEWTON
  • Patent number: 10290385
    Abstract: A boron doped synthetic diamond material which has the following characteristics: a solvent window meeting one or both of the following criteria as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode in a solution containing only deionized water and 0.1M KNO3 as a supporting electrolyte at pH 6: the solvent window extends over a potential range of at least 4.1 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 38 mA cm?2; and the solvent window extends over a potential range of at least 3.3 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 0.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 14, 2019
    Assignee: Element Six Limited
    Inventors: Eleni Bitziou, Laura Anne Hutton, Julie Victoria MacPherson, Mark Edward Newton, Patrick Robert Unwin, Nicola Louise Palmer, Timothy Peter Mollart, Joseph Michael Dodson
  • Publication number: 20170322172
    Abstract: An electrochemical sensor comprising: a boron doped diamond electrode formed of boron doped diamond material; an array of non-diamond carbon sites disposed on a sensing surface of the boron doped diamond electrode; electrochemically active surface groups bonded to the non-diamond carbon sites for generating a redox peak associated with a target species which reacts with the electrochemically active surface groups bonded to the non-diamond carbon sites when a solution containing the target species is disposed in contact with the sensing surface in use; an electrical controller configured to scan the boron doped diamond electrode over a potential range to generate said redox peak; and a processor configured to give an electrochemical reading based on one or both of a position and an intensity of said redox peak.
    Type: Application
    Filed: November 20, 2015
    Publication date: November 9, 2017
    Inventors: Laura Anne Hutton, Maxim Bruckshaw Joseph, Roy Edward Patrick Meyler, Julie Victoria Macpherson, Timothy Peter Mollart, Zoe Ayers
  • Publication number: 20150212042
    Abstract: A sensor comprising: a first electrode formed of an electrically conductive material and configured to be located in contact which a solution to be analysed; a second electrode configured to be in electrical contact with the solution to be analysed; an electrical controller configured to apply a potential difference between the first and second electrodes to electro-deposit chemical species from the solution onto the first electrode, and an x-ray fluorescence spectrometer configured to perform an x-ray fluorescence spectroscopic analysis technique on the electro-deposited chemical species, the x-ray fluorescence spectrometer comprising an x-ray source configured to direct an x-ray excitation beam to the electro-deposited chemical species on the first electrode and an x-ray detector configured to receive x-rays emitted from the electro-deposited chemical species and generate spectroscopic data about the chemical species electro-deposited on the first electrode, wherein the sensor is configured such that in use
    Type: Application
    Filed: August 9, 2013
    Publication date: July 30, 2015
    Inventors: Mark Edward Newton, Julie Victoria MacPherson, Timothy Peter Mollart
  • Publication number: 20150204805
    Abstract: an x-ray fluorescence spectrometer (52); and a sample holder (2) for the x-ray fluorescence (XRF) spectrometer (52), wherein the sample holder (2) comprises: an electrically conductive synthetic diamond electrode (4) providing a front surface (6) on which chemical species can be electro-deposited from a solution (48) comprising the chemical species; an ohmic contact (8) disposed on a rear surface of the electrically conductive synthetic diamond electrode (4); and an electrical connector (10) which is connected to the ohmic contact (8), and wherein the x-ray fluorescence spectrometer (52) comprises: an XRF sample stage (58) configured to receive the sample holder (2); an x-ray source (54) configured to apply an x-ray excitation beam to the chemical species electro-deposited on the electrically conductive synthetic diamond electrode (4) when the sample holder (2) is mounted to the XRF sample stage (58); an x-ray detector (60) configured to receive x-rays emitted from the chemical species electro-deposited on t
    Type: Application
    Filed: August 9, 2013
    Publication date: July 23, 2015
    Inventors: Mark Edward Newton, Julie Victoria MacPherson, Timothy Peter Mollart
  • Patent number: 9036148
    Abstract: A method of analyzing chemical species in a solution, the method comprising: providing an electrochemical deposition apparatus comprising a first electrode (2) formed of an electrically conductive diamond material and a second electrode (4); locating the first electrode in contact with a solution (8) to be analyzed and the second electrode in electrical contact with the solution to be analyzed; applying a potential difference between the first and second electrodes (2, 4) such that current flows between the first and second electrodes through the solution to be analyzed and chemical species are electro-deposited from the solution onto the first electrode; applying a spectroscopic analysis technique to the electro-deposited chemical species (M1, M2, M3) on the first electrode to generate spectroscopic data about the electro-deposited chemical species on the first electrode; and using the spectroscopic data to determine the type of chemical species electro-deposited on the first electrode.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: May 19, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Mark Edward Newton, Julie Victoria MacPherson, Patrick Robert Unwin, Timothy Peter Mollart
  • Patent number: 9036149
    Abstract: An electrochemical sensor comprising: a reference electrode (4) formed of an electrically conductive synthetic doped diamond material and configured to be located in electrical contact with a solution (8) to be analysed; a sensing electrode (2) formed of an electrically conductive synthetic doped diamond material and configured to be located in contact with the solution (8) to be analysed; an electrical controller (10) configured to conduct stripping voltammetric measurements by applying a voltage to the sensing electrode (2), to change the applied voltage relative to the reference electrode (4), and to measure an electric current flowing through the sensing electrode (2) thereby generating voltammetry data; and a calibration system configured to provide an in-situ calibration for providing a reference point in the voltammetric data since the potential of the diamond reference electrode is non fixed and floating.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: May 19, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Mark Edward Newton, Julie Victoria MacPherson, Laura Anne Hutton, Timothy Peter Mollart, Geoffrey Alan Scarsbrook
  • Publication number: 20150102266
    Abstract: A boron doped synthetic diamond material which has the following characteristics: a solvent window meeting one or both of the following criteria as measured by sweeping a potential of the boron doped synthetic diamond material with respect to a saturated calomel reference electrode in a solution containing only deionised water and 0.1 M KNO3 as a supporting electrolyte at pH 6: the solvent window extends over a potential range of at least 4.1 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 38 mA cm?2; and the solvent window extends over a potential range of at least 3.3 V wherein end points of the potential range for the solvent window are defined when anodic and cathodic current density measured at the boron doped synthetic diamond material reaches 0.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 16, 2015
    Inventors: Eleni Bitziou, Laura Anne Hutton, Julie Victoria MacPherson, Mark Edward Newton, Patrick Robert Unwin, Nicola Louise Palmer, Timothy Peter Mollart, Joseph Michael Dodson
  • Patent number: 8795485
    Abstract: Microelectrode comprising a body formed from electrically non-conducting material and including at least one region of electrically conducting material and at least one passage extending through the body of non-conducting material and the region of conducting material, the electrically conducting region presenting an area of electrically conducting material to a fluid flowing through the passage in use. An electrochemical cell which includes such a microelectrode is also disclosed.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 5, 2014
    Assignee: Element Six Technologies Limited
    Inventors: Andrew John Whitehead, Geoffrey Alan Scarsbrook, Julie Victoria Macpherson, Mark Newton, Patrick Robert Unwin, William Joseph Yost, III
  • Publication number: 20140174924
    Abstract: The invention relates to electrodes for electrochemical analysis comprising: —an insulating surface; —carbon nanotubes situated on the insulating surface at a density of at least 0.1 ?mCNT Um?2; and —an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes cover an area of no more than about 5.0% of the insulating surface. Methods of making such electrodes and assay devices or kits with such electrodes, are also provided.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: THE UNIVERSITY OF WARWICK
    Inventors: Julie Victoria Macpherson, Patrick Robert Unwin
  • Patent number: 8709223
    Abstract: The invention relates to electrodes for electrochemical analysis comprising: —an insulating surface; —carbon nanotubes situated on the insulating surface at a density of at least 0.1 ?mCNT Um?2; and —an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes cover an area of no more than about 5.0% of the insulating surface. Methods of making such electrodes and assay devices or kits with such electrodes, are also provided.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 29, 2014
    Assignee: The University of Warwick
    Inventors: Julie Victoria Macpherson, Patrick Robert Unwin
  • Publication number: 20140069815
    Abstract: A method of analysing chemical species in a solution, the method comprising: providing an electrochemical deposition apparatus comprising a first electrode (2) formed of an electrically conductive diamond material and a second electrode (4); locating the first electrode in contact with a solution (8) to be analysed and the second electrode in electrical contact with the solution to be analysed; applying a potential difference between the first and second electrodes (2, 4) such that current flows between the first and second electrodes through the solution to be analysed and chemical species are electro-deposited from the solution onto the first electrode; applying a spectroscopic analysis technique to the electro-deposited chemical species (M1, M2, M3) on the first electrode to generate spectroscopic data about the electro-deposited chemical species on the first electrode; and using the spectroscopic data to determine the type of chemical species electro-deposited on the first electrode.
    Type: Application
    Filed: May 11, 2012
    Publication date: March 13, 2014
    Applicant: ELEMENT SIX LIMITED
    Inventors: Mark Edward Newton, Julie Victoria MacPherson, Patrick Robert Unwin, Timothy Peter Mollart
  • Publication number: 20140069811
    Abstract: An electrochemical sensor comprising: a reference electrode (4) formed of an electrically conductive synthetic doped diamond material and configured to be located in electrical contact with a solution (8) to be analysed; a sensing electrode (2) formed of an electrically conductive synthetic doped diamond material and configured to be located in contact with the solution (8) to be analysed; an electrical controller (10) configured to conduct stripping voltammetric measurements by applying a voltage to the sensing electrode (2), to change the applied voltage relative to the reference electrode (4), and to measure an electric current flowing through the sensing electrode (2) thereby generating voltammetry data; and a calibration system configured to provide an in-situ calibration for providing a reference point in the voltammetric data since the potential of the diamond reference electrode is non fixed and floating.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 13, 2014
    Inventors: Mark Edward Newton, Julie Victoria MacPherson, Laura Anne Hutton, Timothy Peter Mollart, Geoffrey Alan Scarsbrook
  • Publication number: 20130327640
    Abstract: A diamond based electrochemical band sensor comprising: a diamond body; and a plurality of boron doped diamond band electrodes disposed within the diamond body, wherein at least a portion of each of the plurality of boron doped diamond band electrodes is doped with boron to a level suitable to achieve metallic conduction, the boron doped diamond electrodes being spaced apart by non-conductive intrinsic layers of diamond, wherein the diamond body comprises a front sensing surface with the plurality of boron doped diamond band electrodes being exposed at said sensing surface and extending in an elongate manner across said surface, and wherein each boron doped diamond electrode has a length/width ratio of at least 10 at the front sensing surface.
    Type: Application
    Filed: March 15, 2012
    Publication date: December 12, 2013
    Applicant: ELEMENT SIX LIMITED
    Inventors: Timothy Peter Mollart, Geoffrey Alan Scarsbrook, Mark Edward Newton, Julie Victoria MacPherson, Patrick Robert Unwin
  • Publication number: 20120090997
    Abstract: Microelectrode comprising a body formed from electrically non-conducting material and including at least one region of electrically conducting material and at least one passage extending through the body of non-conducting material and the region of conducting material, the electrically conducting region presenting an area of electrically conducting material to a fluid flowing through the passage in use. An electrochemical cell which includes such a microelectrode is also disclosed.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Inventors: Andrew John WHITEHEAD, Geoffrey Alan Scarsbrook, Julie Victoria Macpherson, Mark Newton, Patrick Robert Unwin, William Joseph Yost, III