Patents by Inventor Julien P. Fourcade

Julien P. Fourcade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230212081
    Abstract: A refractory object may include a zircon body that is intentionally doped with a dopant including an alkaline earth element and aluminum. The refractory object can have an improved creep deformation rate. In an embodiment, the refractory object can have a creep deformation rate of not greater than about 1.8 E-5 h?1 at a temperature of 1350° C. and a stress of 2 MPa. In another embodiment, the zircon body may include an amorphous phase including an alkaline earth metal element.
    Type: Application
    Filed: March 10, 2023
    Publication date: July 6, 2023
    Inventors: Deniz CETIN, Julien P. Fourcade, Olivier Citti, Darren Rogers
  • Patent number: 11634363
    Abstract: A refractory object may include a zircon body that is intentionally doped with a dopant including an alkaline earth element and aluminum. The refractory object can have an improved creep deformation rate. In an embodiment, the refractory object can have a creep deformation rate of not greater than about 1.8 E-5 h?1 at a temperature of 1350° C. and a stress of 2 MPa. In another embodiment, the zircon body may include an amorphous phase including an alkaline earth metal element.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 25, 2023
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Deniz Cetin, Julien P. Fourcade, Olivier Citti, Darren Rogers
  • Patent number: 11465940
    Abstract: A refractory object may include a zircon body that may include at least about 0.1 wt. % and not greater than about 5.5 wt. % of an Al2O3 containing component for a total weight of the zircon body. The zircon body may further include at least about 25 wt. % and not greater than about 35 wt. % of a SiO2 component for a total weight of the zircon body.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: October 11, 2022
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, David J. Lechevalier, Olivier Citti
  • Patent number: 10590041
    Abstract: A refractory object can include at least approximately 10 wt % Al2O3 and at least approximately 1 wt % SiO2. In an embodiment, the refractory object can include an additive. In a particular embodiment, the additive can include TiO2, Y2O3, SrO, BaO, CaO, Ta2O5, Fe2O3, ZnO, or MgO. The refractory object can include at least approximately 3 wt % of the additive. In an additional embodiment, the refractory object can include no greater than approximately 8 wt % of the additive. In a further embodiment, the creep rate of the refractory object can be at least approximately 1×10?6 h?1. In another embodiment, the creep rate of the refractory object can be no greater than approximately 5×10?5 h?1. In an illustrative embodiment, the refractory object can include a glass overflow trough or a forming block.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 17, 2020
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak
  • Patent number: 10336653
    Abstract: A refractory object may include a Cr2O3 content of at least about 80 wt. % of a total weight of the refractory object, an Al2O3 content of at least about 0.7 wt. % and not greater than about 10.0 wt. % of the total weight of the refractory object, a SiO2 content of at least about 0.3 wt. % and not greater than about 5.0 wt. % of the total weight of the refractory object and a TiO2 content of at least about 1.0 wt. % and not greater than about 5.6 wt. % TiO2 of the total weight of the refractory object. The refractory object may further include an MOR of at least about 37 MPa as measured at 1200° C.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 2, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Kristen E. Pappacena, Julien P. Fourcade
  • Patent number: 10308556
    Abstract: A refractory object may include a zircon body that may include at least about 0.1 wt. % and not greater than about 5.5 wt. % of an Al2O3 containing component for a total weight of the zircon body. The zircon body may further include at least about 25 wt. % and not greater than about 35 wt. % of a SiO2 component for a total weight of the zircon body.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: June 4, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, David J. Lechevalier, Olivier Citti
  • Patent number: 9902653
    Abstract: A refractory object can include at least approximately 10 wt % Al2O3 and at least approximately 1 wt % SiO2. In an embodiment, the refractory object can include an additive. In a particular embodiment, the additive can include TiO2, Y2O3, SrO, BaO, CaO, Ta2O5, Fe2O3, ZnO, or MgO. The refractory object can include at least approximately 3 wt % of the additive. In an additional embodiment, the refractory object can include no greater than approximately 8 wt % of the additive. In a further embodiment, the creep rate of the refractory object can be at least approximately 1×10?6 h?1. In another embodiment, the creep rate of the refractory object can be no greater than approximately 5×10?5 h?1. In an illustrative embodiment, the refractory object can include a glass overflow trough or a forming block.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 27, 2018
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak
  • Patent number: 9809500
    Abstract: A refractory object may include a zircon body that may include at least about 0.1 wt. % and not greater than about 5.5 wt. % of an Al2O3 containing component for a total weight of the zircon body. The zircon body may further include at least about 25 wt. % and not greater than about 35 wt. % of a SiO2 component for a total weight of the zircon body.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 7, 2017
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, David J. Lechevalier, Olivier Citti
  • Patent number: 9624132
    Abstract: A component includes a body including zircon (ZrSiO4) grains, the body having a free silica intergranular phase present between the zircon grains and distributed substantially uniformly through the body. The body comprises a content of free silica not greater than about 2 wt. % for the total weight of the body.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: April 18, 2017
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak, David J. Lechevalier
  • Patent number: 9403689
    Abstract: A zircon body for use in glass manufacturing is provided containing zircon grains and an intergranular phase present between the zircon grains. The intergranular phase may contain silicon oxide. The body may be exposed to a halide to at least partially remove at least a majority of the silicon oxide contained in the intergranular phase from the outer portion or to at least partially remove the intergranular phase along an outer portion of the component.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: August 2, 2016
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, Olivier Citti
  • Patent number: 9399585
    Abstract: A zircon body for use in glass manufacturing is provided containing zircon grains and an intergranular phase present between the zircon grains. The intergranular phase may contain silicon oxide. The body may be exposed to a halide to at least partially remove at least a majority of the silicon oxide contained in the intergranular phase from the outer portion or to at least partially remove the intergranular phase along an outer portion of the component.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: July 26, 2016
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, Olivier Citti
  • Patent number: 9272958
    Abstract: A component includes a body including zircon (ZrSiO4) grains, the body having a free silica intergranular phase present between the zircon grains and distributed substantially uniformly through the body. The body comprises a content of free silica not greater than about 2 wt. % for the total weight of the body.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: March 1, 2016
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak, David J. Lechevalier
  • Patent number: 9249043
    Abstract: A refractory object can include at least approximately 10 wt % Al2O3 and at least approximately 1 wt % SiO2. In an embodiment, the refractory object can include an additive. In a particular embodiment, the additive can include TiO2, Y2O3, SrO, BaO, CaO, Ta2O5, Fe2O3, ZnO, or MgO. The refractory object can include at least approximately 3 wt % of the additive. In an additional embodiment, the refractory object can include no greater than approximately 8 wt % of the additive. In a further embodiment, the creep rate of the refractory object can be at least approximately 1×10?6 h?1. In another embodiment, the creep rate of the refractory object can be no greater than approximately 5×10?5 h?1. In an illustrative embodiment, the refractory object can include a glass overflow trough or a forming block.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: February 2, 2016
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak
  • Publication number: 20150274599
    Abstract: A refractory object may include a zircon body that may include at least about 0.1 wt. % and not greater than about 5.5 wt. % of an Al2O3 containing component for a total weight of the zircon body. The zircon body may further include at least about 25 wt. % and not greater than about 35 wt. % of a SiO2 component for a total weight of the zircon body.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 1, 2015
    Inventors: Julien P. Fourcade, David J. Lechevalier, Olivier Citti
  • Publication number: 20140334994
    Abstract: A zircon body for use in glass manufacturing is provided containing zircon grains and an intergranular phase present between the zircon grains The intergranular phase may contain silicon oxide. The body may be exposed to a halide to at least partially remove at least a majority of the silicon oxide contained in the intergranular phase from the outer portion or to at least partially remove the intergranular phase along an outer portion of the component.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventors: Julien P. Fourcade, Olivier Citti
  • Publication number: 20140235427
    Abstract: A component includes a body including zircon (ZrSiO4) grains, the body having a free silica intergranular phase present between the zircon grains and distributed substantially uniformly through the body. The body comprises a content of free silica not greater than about 2 wt. % for the total weight of the body.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak, David J. Lechevalier
  • Publication number: 20130217563
    Abstract: A refractory object can include at least approximately 10 wt % Al2O3 and at least approximately 1 wt % SiO2. In an embodiment, the refractory object can include an additive. In a particular embodiment, the additive can include TiO2, Y2O3, SrO, BaO, CaO, Ta2O5, Fe2O3, ZnO, or MgO. The refractory object can include at least approximately 3 wt % of the additive. In an additional embodiment, the refractory object can include no greater than approximately 8 wt % of the additive. In a further embodiment, the creep rate of the refractory object can be at least approximately 1×10?6 h?1. In another embodiment, the creep rate of the refractory object can be no greater than approximately 5×10?5 h?1. In an illustrative embodiment, the refractory object can include a glass overflow trough or a forming block.
    Type: Application
    Filed: January 10, 2013
    Publication date: August 22, 2013
    Inventors: Olivier Citti, Julien P. Fourcade, Andrea L. Kazmierczak
  • Publication number: 20120141701
    Abstract: A zircon body for use in glass manufacturing is provided containing zircon grains and an intergranular phase present between the zircon grains. The intergranular phase may contain silicon oxide. The body may be exposed to a halide to at least partially remove at least a majority of the silicon oxide contained in the intergranular phase from the outer portion or to at least partially remove the intergranular phase along an outer portion of the component.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Applicant: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, Olivier Citti
  • Patent number: 8147724
    Abstract: A tin oxide-based electrode formed from a composition including a majority component comprising tin-oxide (SnO2), and additives comprising CuO, ZnO, and a resistivity modifying species. The total amount of CuO and ZnO is not greater than about 0.3 wt %, and the ZnO is present in an amount within a range between about 0.1 wt % and about 0.19 wt %.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 3, 2012
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Julien P. Fourcade, Olivier Citti
  • Publication number: 20100154481
    Abstract: A refractory article including a bushing block having a body comprising an opening extending through the body, wherein the bushing block is formed from a composition comprising a primary component comprising tin oxide. The composition for forming the bushing block body can further include at least one additive selected from the group of additives consisting of a corrosion inhibitor, a sintering aid, and a resistivity modifying species, or a combination thereof.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Julien P. Fourcade, Olivier Citti