Patents by Inventor Julong He

Julong He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11708268
    Abstract: The present disclosure relates to a novel sp2-sp3 hybrid crystalline boron nitride and its preparation process. A novel sp2-sp3 hybrid crystalline boron nitride allotrope, named Gradia BN, is synthesized using sp2 or sp3 hybridized boron nitride as raw materials under high-temperature and high-pressure. The basic structural units of Gradia BN are composed of sp2 hybridized graphite-like structural units and sp3 hybridized diamond-like structural units. Gradia BN disclosed in the present disclosure is a class of new sp2-sp3 hybrid boron nitride allotrope, whose crystal structure can vary with the widths and/or crystallographic orientation relationships of internal sp2 and/or sp3 structural units, and may have variable physical properties.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: July 25, 2023
    Assignee: YANSHAN UNIVERSITY
    Inventors: Zhisheng Zhao, Kun Luo, Lei Sun, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Yongjun Tian, Bo Xu, Zhongyuan Liu
  • Publication number: 20230159336
    Abstract: The present application discloses a conductive high-strength diamond/amorphous carbon composite material and a preparation process thereof. The diamond/amorphous carbon composite material is composed of an amorphous carbon continuous phase and multiple separate diamond phases embedded in the amorphous carbon continuous phase, wherein the diamond phases exhibit an ordered sp3 hybrid state, and the amorphous carbon continuous phase exhibits a disordered sp2 hybrid state. The present application further discloses a process for preparing the above diamond/amorphous carbon composite material. The process comprises using sp3 carbon powder or glassy carbon as a raw material to obtain the above-mentioned material by sintering. The diamond/amorphous carbon composite material shows good electrical conductivity, good electrical discharge machining ability, good chemical stability and light weight, and has broad application prospects in aerospace, automobile industry and biomedical equipment.
    Type: Application
    Filed: June 23, 2022
    Publication date: May 25, 2023
    Inventors: Zhisheng Zhao, Bing Liu, Zihe Li, Yingju Wu, Kun Luo, Lei Sun, Baozhong Li, Julong He, Dongli Yu, Zhongyuan Liu, Wentao Hu, Bo Xu, Yongjun Tian
  • Patent number: 11634327
    Abstract: The present disclosure belongs to the technical filed of new carbon materials and relates to a novel sp2-sp3 hybrid crystalline carbon named Gradia and its preparation process. A novel sp2-sp3 hybrid carbon named Gradia is synthesized using sp2 hybrid carbon as raw materials under high temperature and high pressure. The basic structural units of Gradia are composed of sp2 hybrid graphite-like structural units and sp3 hybrid diamond-like structural units. Gradia disclosed in the present disclosure is a class of new sp2-sp3 hybrid carbon allotrope, whose crystal structure can vary with the widths and/or crystallographic orientation relationships of internal sp2 and/or sp3 structural units.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: April 25, 2023
    Assignee: YANSHAN UNIVERSITY
    Inventors: Zhisheng Zhao, Kun Luo, Bing Liu, Wentao Hu, Lei Sun, Julong He, Dongli Yu, Yongjun Tian, Bo Xu, Zhongyuan Liu
  • Publication number: 20230096512
    Abstract: The application provides a porous carbon block material having high elasticity and high sealing, and provides a method for preparing the same. Particularly, the present application provides a porous carbon block material, wherein the porous carbon block material has a pore size in the range of from 3 nm to 100 nm, a porosity of from 50% to 87%, and the pores in the material are closed pores. In addition, the application provides a method for preparing the porous carbon block material according to the present application. The porous carbon block material according to the present application has small pore size, high porosity, and closed pores, and thus has high strength combined with high elasticity, high sealing property, and low density. Hence, the porous carbon block material according to the present application may be used as a sealing material.
    Type: Application
    Filed: June 16, 2022
    Publication date: March 30, 2023
    Inventors: Zhisheng Zhao, Yingju Wu, Zitai Liang, Yang Zhang, Xiaoyu Wang, Zewen Zhuge, Julong He, Dongli Yu, Bo Xu, Yongjun Tian
  • Patent number: 11312660
    Abstract: The present disclosure relates to a dense boron nitride ceramic with high plasticity and high elasticity and the preparation process thereof. The preparation process includes the following steps: A) weighing a predetermined amount of spherical boron nitride nano-powders with onion-like structure, pre-pressing them into a pre-pressed body and putting the pre-pressed body into a sintering mold; B) putting the pre-pressed body obtained in step A) together with the sintering mold into a spark plasma sintering apparatus or a hot-pressing sintering apparatus for sintering; and C) taking out the mold after cooling, and removing the mold to obtain the boron nitride dense ceramic block with high plasticity and high elasticity. According to the present invention, a boron nitride ceramic with high strength and high plasticity is obtained via sintering spherical boron nitride nano-powders with onion-like structure.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 26, 2022
    Assignee: YANSHAN UNIVERSITY
    Inventors: Zhisheng Zhao, Yang Zhang, Yingju Wu, Shuangshuang Zhang, Wentao Hu, Dongli Yu, Julong He, Bo Xu, Zhongyuan Liu, Yongjun Tian
  • Publication number: 20210323822
    Abstract: The present disclosure relates to a novel sp2-sp3 hybrid crystalline boron nitride and its preparation process. A novel sp2-sp3 hybrid crystalline boron nitride allotrope, named Gradia BN, is synthesized using sp2 or sp3 hybridized boron nitride as raw materials under high-temperature and high-pressure. The basic structural units of Gradia BN are composed of sp2 hybridized graphite-like structural units and sp3 hybridized diamond-like structural units. Gradia BN disclosed in the present disclosure is a class of new sp2-sp3 hybrid boron nitride allotrope, whose crystal structure can vary with the widths and/or crystallographic orientation relationships of internal sp2 and/or sp3 structural units, and may have variable physical properties.
    Type: Application
    Filed: September 30, 2020
    Publication date: October 21, 2021
    Inventors: Zhisheng Zhao, Kun Luo, Lei Sun, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Yongjun Tian, Bo Xu, Zhongyuan Liu
  • Publication number: 20210061719
    Abstract: The present disclosure relates to a dense boron nitride ceramic with high plasticity and high elasticity and the preparation process thereof. The preparation process includes the following steps: A) weighing a predetermined amount of spherical boron nitride nano-powders with onion-like structure, pre-pressing them into a pre-pressed body and putting the pre-pressed body into a sintering mold; B) putting the pre-pressed body obtained in step A) together with the sintering mold into a spark plasma sintering apparatus or a hot-pressing sintering apparatus for sintering; and C) taking out the mold after cooling, and removing the mold to obtain the boron nitride dense ceramic block with high plasticity and high elasticity. According to the present invention, a boron nitride ceramic with high strength and high plasticity is obtained via sintering spherical boron nitride nano-powders with onion-like structure.
    Type: Application
    Filed: March 25, 2020
    Publication date: March 4, 2021
    Inventors: Zhisheng Zhao, Yang Zhang, Yingju Wu, Shuangshuang Zhang, Wentao Hu, Dongli Yu, Julong He, Bo Xu, Zhongyuan Liu, Yongjun Tian
  • Publication number: 20210039950
    Abstract: The present disclosure belongs to the technical filed of new carbon materials and relates to a novel sp2-sp3 hybrid crystalline carbon named Gradia and its preparation process. A novel sp2-sp3 hybrid carbon named Gradia is synthesized using sp2 hybrid carbon as raw materials under high temperature and high pressure. The basic structural units of Gradia are composed of sp2 hybrid graphite-like structural units and sp3 hybrid diamond-like structural units. Gradia disclosed in the present disclosure is a class of new sp2-sp3 hybrid carbon allotrope, whose crystal structure can vary with the widths and/or crystallographic orientation relationships of internal sp2 and/or sp3 structural units.
    Type: Application
    Filed: March 26, 2020
    Publication date: February 11, 2021
    Inventors: Zhisheng Zhao, Kun Luo, Bing Liu, Wentao Hu, Lei Sun, Julong He, Dongli Yu, Yongjun Tian, Bo Xu, Zhongyuan Liu
  • Patent number: 10160654
    Abstract: The present invention relates to ultrahard nanotwinned diamond bulk materials and synthetic method thereof. In particular, the present invention discloses a diamond bulk material containing high density of nanocrystalline twins and synthetic method thereof, in which a nanotwinned diamond bulk is synthesized from particles of nanospherical onion-like carbon without diamond core (preferably with a size of 5-70 nm) as raw materials by using high temperature and high pressure synthesis. As compared with the prior art, the nanotwinned diamond bulk obtained according to the present invention has a much higher hardness than that of single crystal diamond and that of ultrahard polycrystalline diamond. The nanotwinned diamond bulk has wide prospects in various applications, including geological drilling, machining fields such as high speed cutting and precision and ultra-precision machining, abrasives, drawing dies, and special optics as well as other fields.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: December 25, 2018
    Assignee: Yanshan University
    Inventors: Yongjun Tian, Quan Huang, Dongli Yu, Bo Xu, Julong He, Zhongyuan Liu, Wentao Hu, Zhisheng Zhao
  • Patent number: 9422161
    Abstract: The invention relates to an ultrahard nanotwinned boron nitride bulk material and synthetic method thereof. Particularly, the invention discloses a nanocrystalline cubic boron nitride bulk material containing high density of twins and synthetic method thereof, in which a nanotwinned boron nitride bulk are synthesized from nanospherical boron nitride particles (preferably with a size of 5-70 nm) with onion-like structure as raw materials by using high temperature and high pressure synthesis. As compared with the prior arts, the nanotwinned boron nitride bulk obtained according to the invention has a much higher hardness than that of a normal cubic boron nitride single crystal. The nanotwinned boron nitride bulk has great prospects in applications, such as precision and ultra-precision machining, abrasives, drawing dies, and special optics as well as other fields.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: August 23, 2016
    Assignee: YANSHAN UNIVERSITY
    Inventors: Yongjun Tian, Dongli Yu, Bo Xu, Julong He, Zhongyuan Liu, Wentao Hu, Kun Luo, Yufei Gao, Zhisheng Zhao
  • Publication number: 20160137510
    Abstract: The present invention relates to ultrahard nanotwinned diamond bulk materials and synthetic method thereof. In particular, the present invention discloses a diamond bulk material containing high density of nanocrystalline twins and synthetic method thereof, in which a nanotwinned diamond bulk is synthesized from particles of nanospherical onion-like carbon without diamond core (preferably with a size of 5-70 nm) as raw materials by using high temperature and high pressure synthesis. As compared with the prior art, the nanotwinned diamond bulk obtained according to the present invention has a much higher hardness than that of single crystal diamond and that of ultrahard polycrystalline diamond. The nanotwinned diamond bulk has wide prospects in various applications, including geological drilling, machining fields such as high speed cutting and precision and ultra-precision machining, abrasives, drawing dies, and special optics as well as other fields.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Applicant: Yanshan University
    Inventors: Yongjun TIAN, Quan HUANG, Dongli YU, Bo XU, Julong HE, Zhongyuan LIU, Wentao HU, Zhisheng ZHAO
  • Publication number: 20150158727
    Abstract: The invention relates to an ultrahard nanotwinned boron nitride bulk material and synthetic method thereof. Particularly, the invention discloses a nanocrystalline cubic boron nitride bulk material containing high density of twins and synthetic method thereof, in which a nanotwinned boron nitride bulk are synthesized from nanospherical boron nitride particles (preferably with a size of 5-70 nm) with onion-like structure as raw materials by using high temperature and high pressure synthesis. As compared with the prior arts, the nanotwinned boron nitride bulk obtained according to the invention has a much higher hardness than that of a normal cubic boron nitride single crystal. The nanotwinned boron nitride bulk has great prospects in applications, such as precision and ultra-precision machining, abrasives, drawing dies, and special optics as well as other fields.
    Type: Application
    Filed: August 2, 2013
    Publication date: June 11, 2015
    Applicant: YANSHAN UNIVERSITY
    Inventors: Yongjun Tian, Dongli Yu, Bo Xu, Julong He, Zhongyuan Liu, Wentao Hu, Kun Luo, Yufei Gao, Zhisheng Zhao
  • Publication number: 20100295202
    Abstract: The present invention provides a method for the fabrication of high performance densified nanocrystalline bulk thermoelectric material, comprising: (1) preparing a thermoelectric alloy nanopowders by a ball milling process to achieve an average crystal size of 5-30 nm, and (2) preparing the nanocrystalline bulk thermoelectric material by high pressure sintering at a temperature of 0.25-0.8 Tm under a pressure of 0.8-6.0 GPa for 10-120 minutes, to achieve a relative density of 90-100% and an average grain size of 10-50 nm. The method is easy to operate and allows the production of a thermoelectric material with a ZT value higher than 2. In addition, the method can ensure both good thermoelectric properties and high density, and therefore have important applications for energy industry.
    Type: Application
    Filed: August 14, 2009
    Publication date: November 25, 2010
    Applicant: YANSHAN UNIVERSITY
    Inventors: Yongjun Tian, Fengrong Yu, Dongli Yu, Jianjun Zhang, Bo Xu, Zhongyuan Liu, Julong He