Patents by Inventor Jumpei IWASAKI

Jumpei IWASAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395389
    Abstract: An etching method including an etching step of bringing an etching gas which contains nitrosyl fluoride and has been converted into plasma into contact with a member to be etched (9) having an etching object and a non-etching object, and selectively etching the etching object as compared with the non-etching object. The etching step is performed in a chamber (7) containing the member to be etched (9) using a remote plasma generation device (16) provided outside the chamber (7) as a plasma generation source. The concentration of nitrosyl fluoride in the etching gas is 0.3 vol % or more, the temperature condition of the etching step is 0° C. to 250° C., and the pressure condition of the etching step is 100 Pa or more and 3 kPa or less. The etching object includes silicon nitride. Also disclosed is a method for producing a semiconductor device using the etching method.
    Type: Application
    Filed: October 12, 2021
    Publication date: December 7, 2023
    Applicant: Resonac Corporation
    Inventors: Jumpei IWASAKI, Yosuke TANIMOTO, Kazuma MATSUI
  • Patent number: 11747744
    Abstract: An electrostatic charge image developing carrier includes: magnetic particles; and a resin layer coating the magnetic particles and containing inorganic particles, in which an average particle diameter of the inorganic particles is 5 nm or more and 90 nm or less, an average thickness of the resin layer is 0.6 ?m or more and 1.4 ?m or less, and a ratio B/A of a surface area B of the electrostatic charge image developing carrier to a plan view area A of the electrostatic charge image developing carrier is 1.020 or more and 1.100 or less when a surface of the electrostatic charge image developing carrier is three-dimensionally analyzed.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: September 5, 2023
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Jumpei Iwasaki, Yasuo Kadokura, Shintaro Anno, Kazutsuna Sasaki, Satoshi Miura
  • Patent number: 11561483
    Abstract: An electrostatic charge image developing carrier includes: magnetic particles; and a resin layer coating the magnetic particles and containing inorganic particles, in which an exposed area ratio of the magnetic particles is 0.1% or more and 4.0% or less, an average particle diameter of the inorganic particles is 5 nm or more and 90 nm or less, and a ratio B/A of a surface area B of the electrostatic charge image developing carrier to a plan view area A of the electrostatic charge image developing carrier is 1.020 or more and 1.100 or less when a surface of the electrostatic charge image developing carrier is three-dimensionally analyzed.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: January 24, 2023
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Kazutsuna Sasaki, Yasuo Kadokura, Shintaro Anno, Satoshi Miura, Jumpei Iwasaki
  • Patent number: 11181847
    Abstract: A carrier for electrostatic image development includes: a core material; and a coating resin layer that contains inorganic particles and covers the core material. The content of the inorganic particles is 10% by mass or more and 60% by mass or less based on the total mass of the coating resin layer. The volume average diameter D (?m) of the inorganic particles and the thickness T (?m) of the coating resin layer satisfy the following relational expression (1): 0.007?D/T?0.24.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: November 23, 2021
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Shintaro Anno, Takuro Watanabe, Yasuaki Hashimoto, Yasuo Kadokura, Kazutsuna Sasaki, Jumpei Iwasaki
  • Publication number: 20210278773
    Abstract: An electrostatic charge image developing carrier includes: magnetic particles; and a resin layer coating the magnetic particles and containing inorganic particles, in which an average particle diameter of the inorganic particles is 5 nm or more and 90 nm or less, an average thickness of the resin layer is 0.6 ?m or more and 1.4 ?m or less, and a ratio B/A of a surface area B of the electrostatic charge image developing carrier to a plan view area A of the electrostatic charge image developing carrier is 1.020 or more and 1.100 or less when a surface of the electrostatic charge image developing carrier is three-dimensionally analyzed.
    Type: Application
    Filed: July 31, 2020
    Publication date: September 9, 2021
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Jumpei IWASAKI, Yasuo Kadokura, Shintaro Anno, Kazutsuna Sasaki, Satoshi Miura
  • Publication number: 20210271180
    Abstract: An electrostatic charge image developing carrier includes: magnetic particles; and a resin layer coating the magnetic particles and containing inorganic particles, in which an exposed area ratio of the magnetic particles is 0.1% or more and 4.0% or less, an average particle diameter of the inorganic particles is 5 nm or more and 90 nm or less, and a ratio B/A of a surface area B of the electrostatic charge image developing carrier to a plan view area A of the electrostatic charge image developing carrier is 1.020 or more and 1.100 or less when a surface of the electrostatic charge image developing carrier is three-dimensionally analyzed.
    Type: Application
    Filed: July 31, 2020
    Publication date: September 2, 2021
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Kazutsuna SASAKI, Yasuo KADOKURA, Shintaro ANNO, Satoshi MIURA, Jumpei IWASAKI
  • Publication number: 20210088924
    Abstract: A carrier for electrostatic image development includes: a core material; and a coating resin layer that contains inorganic particles and covers the core material. The content of the inorganic particles is 10% by mass or more and 60% by mass or less based on the total mass of the coating resin layer. The volume average diameter D (?m) of the inorganic particles and the thickness T (?m) of the coating resin layer satisfy the following relational expression (1): 0.007?D/T?0.24.
    Type: Application
    Filed: April 6, 2020
    Publication date: March 25, 2021
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shintaro ANNO, Takuro WATANABE, Yasuaki HASHIMOTO, Yasuo KADOKURA, Kazutsuna SASAKI, Jumpei IWASAKI