Patents by Inventor Ju Myeung Lee

Ju Myeung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10586978
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 10, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Patent number: 9911976
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20170338478
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 23, 2017
    Inventors: Soichiro KAWAKAMI, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20170338477
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 23, 2017
    Inventors: Soichiro KAWAKAMI, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Patent number: 9761869
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: September 12, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20150280223
    Abstract: The present invention provides surface-modified silicon nanoparticles comprising a LixSiyOz top film and a carbon (C) coating layer on the surface of the nanoparticles by means of the addition of a lithium source and a carbon source during the manufacture of silicon nanoparticles or a post-treatment thereof. According to the present invention, the surface oxidation of the silicon nanoparticles, which would easily occur during a pulverization process, can be prevented. By using the silicon nanoparticles of which oxidation is prevented as a negative electrode material, problems related to decrease in capacity and electrolyte depletion resulting from an oxidized film can be mitigated. Thus, a deterioration in the properties of a lithium secondary battery can be prevented.
    Type: Application
    Filed: August 27, 2013
    Publication date: October 1, 2015
    Applicant: SAMSUNG FINE CHEMICALS CO., LTD
    Inventors: Dong Gyu Chang, Ju Myeung Lee, Kyu Eun Shim, Woo Young Yang
  • Publication number: 20150270536
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Application
    Filed: December 27, 2013
    Publication date: September 24, 2015
    Applicant: SAMSUNG FINE CHEMICALS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20140370384
    Abstract: There are provided a film-type negative electrode filled with an active material and a method of manufacturing the same. The negative electrode according to the present invention includes a porous base film and a negative active material nanoparticle filled in pores of the porous base film According to the present invention, an excessive change in volume of a negative active material can be minimized during charging and discharging so as to improve a lifespan characteristic.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 18, 2014
    Inventors: Ju Myeung Lee, Woo Young Yang, Soichiro Kawakami, Dong Gyu Chang, Hyun Ju Jung
  • Patent number: 8632701
    Abstract: This invention provides an organic-inorganic hybrid material, which can exhibit high proton conductivity in a wide temperature range of a low temperature to a high temperature, a proton conductive material, which has a small particle diameter, that is, has a particle diameter capable of reaching pores of primary particles of carbon powder or the like, and has controlled particle diameters, a catalyst layer containing these materials for a fuel cell and an electrolyte film containing these materials for a fuel cell, and a fuel cell. The proton conductive hybrid material comprises proton conductive inorganic nanoparticles and a proton conductive polymer, wherein the Stokes particle diameter of the proton conductive hybrid material by dynamic light scattering is not more than 20 nm.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: January 21, 2014
    Assignee: The University of Tokyo
    Inventors: Takeo Yamaguchi, Ju Myeung Lee, Gopinathan Madhavikutty Anilkumar
  • Publication number: 20120196206
    Abstract: The disclosed methods enable zirconium sulfophenyl phosphonate, zirconium sulfate, or zirconia sulfate, which has high performance as a proton conducting material and high catalytic activity, to be produced at low temperature by reaction by adding sulfophenyl phosphonic acid or sulfuric acid to zirconium nanoparticles, the zirconium nanoparticles being a precursor of strongly acidic zirconium particles obtained by reacting zirconium alkoxide with zirconium butoxide as a chelating agent and nitric acid as a catalyst in isopropyl alcohol as a solvent.
    Type: Application
    Filed: March 25, 2010
    Publication date: August 2, 2012
    Applicant: TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Takeo Yamaguchi, Yuma Kikuchi, Ju-Myeung Lee, Hidenori Ohashi, Takanori Tamaki
  • Publication number: 20090220840
    Abstract: This invention provides an organic-inorganic hybrid material, which can exhibit high proton conductivity in a wide temperature range of a low temperature to a high temperature, a proton conductive material, which has a small particle diameter, that is, has a particle diameter capable of reaching pores of primary particles of carbon powder or the like, and has controlled particle diameters, a catalyst layer containing these materials for a fuel cell and an electrolyte film containing these materials for a fuel cell, and a fuel cell. The proton conductive hybrid material comprises proton conductive inorganic nanoparticles and a proton conductive polymer, wherein the Stokes particle diameter of the proton conductive hybrid material by dynamic light scattering is not more than 20 nm.
    Type: Application
    Filed: October 3, 2005
    Publication date: September 3, 2009
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Takeo Yamaguchi, Ju Myeung Lee, Gopinathan Madhavikutty Anilkumar