Patents by Inventor Jun Hoshi
Jun Hoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7730734Abstract: A cooling apparatus of a fuel cell vehicle in which a cooling efficiency of a fuel cell cooling heat exchanger located downstream of an air conditioner external heat exchanger does not decrease. (1) In the cooling apparatus, the air conditioner external heat exchanger and the fuel cell cooling heat exchanger are partially offset from each other so that a high-temperature portion of the air conditioner external heat exchanger is not overlapped with the fuel cell cooling heat exchanger in a front view taken from a front side of the vehicle. (2) A portion of the fuel cell cooling heat exchanger extending beyond an end of the air conditioner exterior heat exchanger opposite the high-temperature portion is disposed outside a fan shroud so as to be cooled by a vehicle-running wind only.Type: GrantFiled: January 24, 2006Date of Patent: June 8, 2010Assignees: Toyota Jidosha Kabushiki Kaisha, Denso CorporationInventors: Jun Hoshi, Susumu Ichikawa
-
Patent number: 7621142Abstract: A FC radiator in a FC cooling system, an EV radiator in a driving device cooling system, and a condenser in an air conditioning cooling system are arranged in one plane substantially perpendicular to a direction in which a fuel cell vehicle moves forward at a front portion of the fuel cell. Also, heat exchangers are arranged in order of the condenser, the EV radiator, and the FC radiator, that is, in order of an operating temperature from an upper position to a lower position. An angle of plural fins fitted to a front grille is changed according to a load of a fuel cell and a vehicle speed, each of the plural fins being formed to have an elongate rectangular plate shape extending in a horizontal direction.Type: GrantFiled: May 4, 2005Date of Patent: November 24, 2009Assignee: Toyota Jidosha Kabushiki KaishaInventors: Jun Hoshi, Kazuhiro Maeda, Susumu Ichikawa
-
Patent number: 7497287Abstract: In a ventilation duct of a cooling system, a level difference is formed between a wall located on a vehicle front side and a wall located on a vehicle rear side because a bottom end of the wall located on the vehicle front side is lower than a bottom end of the wall located on the vehicle rear side. The level difference makes a speed of a traveling wind flowing near an outlet faster than that flowing away from the outlet. Therefore, a pressure of the traveling wind flowing near the outlet decreases. As a result, air flows in the ventilation duct to be drawn to the neighborhood of the low-pressure outlet, and discharged out. Because cooling air including the traveling wind can be increased, heat radiation capacity of a radiator disposed in the ventilation duct is improved, and the cooling capacity of the cooling system can also be improved.Type: GrantFiled: July 23, 2004Date of Patent: March 3, 2009Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yuhei Kunikata, Akihiro Maeda, Toshiki Sugiyama, Jun Hoshi
-
Patent number: 7310961Abstract: A heat exchange portion is configured by arranging a condenser for air conditioning, an EV radiator, and a FC radiator in one plane substantially perpendicular to a direction in which a fuel cell vehicle moves, at a front portion of the fuel cell vehicle, in order of an operating temperature, from an upper position to a lower position. A fan is provided behind the heat exchange portion such that a center thereof is closer to the condenser than to the FC radiator. In addition, a fan shroud is provided, in which plural ram pressure holes are formed in a portion which covers the FC radiator.Type: GrantFiled: June 13, 2005Date of Patent: December 25, 2007Assignee: Toyota Jidosha Kabushiki KaishaInventors: Jun Hoshi, Minobu Mizuno, Mitsuru Kimata, Susumu Ichikawa, Keiichi Yoshii, Akira Yamanaka, Yoshihiko Sonoda, Hiroshi Nonoyama
-
Publication number: 20070248861Abstract: A cooling water flow path 41 connected with a radiator 40 includes a fuel cell flow path 41a that makes circulation of cooling water from the radiator 40 via a fuel cell stack 20 to the radiator 40, and an exothermic equipment flow path 41b that is placed in parallel to the fuel cell flow path 41a and makes circulation of cooling water from the radiator 40 via exothermic equipment 13 (including an inverter 32 of a power control unit (PCU) 30, an air supplier 26, a heat exchanger 27, and a driving motor 35) to the radiator 40. The multiple pieces of exothermic equipment 13 are arranged in series along the exothermic equipment flow path 41b in the flow direction of cooling water in an ascending order of heat discharge quantity. The inverter 32, the heat exchanger 27, and the driving motor 35 are respectively equipped with a dual cooling mechanism, an air cooling mechanism, and an oil cooling mechanism.Type: ApplicationFiled: June 10, 2005Publication date: October 25, 2007Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Jun Hoshi
-
Publication number: 20070240431Abstract: The present invention provides a cooling apparatus of a fuel cell vehicle in which a cooling efficiency of a fuel cell cooling heat exchanger located downstream of an air conditioner external heat exchanger does not decrease. (1) In the cooling apparatus, the air conditioner external heat exchanger and the fuel cell cooling heat exchanger are partially offset from each other so that a high-temperature portion of the air conditioner external heat exchanger is not overlapped with the fuel cell cooling heat exchanger in a front view taken from a front side of the vehicle. (2) A portion of the fuel cell cooling heat exchanger extending beyond an end of the air conditioner exterior heat exchanger opposite the high-temperature portion is disposed outside a fan shroud so as to be cooled by a vehicle-running wind only.Type: ApplicationFiled: January 24, 2006Publication date: October 18, 2007Inventors: Jun Hoshi, Susumu Ichikawa
-
Publication number: 20050279113Abstract: A heat exchange portion is configured by arranging a condenser for air conditioning, an EV radiator, and a FC radiator in one plane substantially perpendicular to a direction in which a fuel cell vehicle moves, at a front portion of the fuel cell vehicle, in order of an operating temperature, from an upper position to a lower position. A fan is provided behind the heat exchange portion such that a center thereof is closer to the condenser than to the FC radiator. In addition, a fan shroud is provided, in which plural ram pressure holes are formed in a portion which covers the FC radiator.Type: ApplicationFiled: June 13, 2005Publication date: December 22, 2005Inventors: Jun Hoshi, Minobu Mizuno, Mitsuru Kimata, Susumu Ichikawa, Keiichi Yoshii, Akira Yamanaka, Yoshihiko Sonoda, Hiroshi Nonoyama
-
Publication number: 20050257563Abstract: A FC radiator in a FC cooling system, an EV radiator in a driving device cooling system, and a condenser in an air conditioning cooling system are arranged in one plane substantially perpendicular to a direction in which a fuel cell vehicle moves forward at a front portion of the fuel cell. Also, heat exchangers are arranged in order of the condenser, the EV radiator, and the FC radiator, that is, in order of an operating temperature from an upper position to a lower position. An angle of plural fins fitted to a front grille is changed according to a load of a fuel cell and a vehicle speed, each of the plural fins being formed to have an elongate rectangular plate shape extending in a horizontal direction.Type: ApplicationFiled: May 4, 2005Publication date: November 24, 2005Inventors: Jun Hoshi, Kazuhiro Maeda, Susumu Ichikawa
-
Publication number: 20050029027Abstract: In a ventilation duct of a cooling system, a level difference is formed between a wall located on a vehicle front side and a wall located on a vehicle rear side because a bottom end of the wall located on the vehicle front side is lower than a bottom end of the wall located on the vehicle rear side. The level difference makes a speed of a traveling wind flowing near an outlet faster than that flowing away from the outlet. Therefore, a pressure of the traveling wind flowing near the outlet decreases. As a result, air flows in the ventilation duct to be drawn to the neighborhood of the low-pressure outlet, and discharged out. Because cooling air including the traveling wind can be increased, heat radiation capacity of a radiator disposed in the ventilation duct is improved, and the cooling capacity of the cooling system can also be improved.Type: ApplicationFiled: July 23, 2004Publication date: February 10, 2005Inventors: Yuhei Kunikata, Akihiro Maeda, Toshiki Sugiyama, Jun Hoshi