Patents by Inventor Junichi Tatami

Junichi Tatami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11447696
    Abstract: A fluorescent member according to present invention is composed of a sintered body for wavelength conversion containing a matrix containing magnesium oxide and magnesium hydroxide as main components, and phosphor particles dispersed in the matrix. A thermal conductivity of the fluorescent member is preferably 5 W/(m·K) or higher. A fluorescent member having both a satisfactory thermal conductivity and a satisfactory fluorescent property is provided without requiring a high-temperature sintering process (a high-temperature process at a temperature higher than 250° C.). Further, a method for manufacturing such a fluorescent member and a light-emitting apparatus using such a fluorescent member are provided.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: September 20, 2022
    Assignee: KANAGAWA INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Junichi Tatami, Emi Takahashi, Takuma Takahashi
  • Publication number: 20220034778
    Abstract: The purpose of the present invention is to achieve an in-situ observation of structural change in a shear field of slurry, i.e. an evaluation of a rheology property of slurry containing raw materials of a ceramic as a fluid sample, together with an in-situ observation of internal structure of the fluid sample in an evaluation process, and a clarification of internal structural change.
    Type: Application
    Filed: February 25, 2020
    Publication date: February 3, 2022
    Inventors: Takuma Takahashi, Junichi Tatami, Hiroki Takaba
  • Publication number: 20210317367
    Abstract: A fluorescent member according to present invention is composed of a sintered body for wavelength conversion containing a matrix containing magnesium oxide and magnesium hydroxide as main components, and phosphor particles dispersed in the matrix. A thermal conductivity of the fluorescent member is preferably 5 W/(m·K) or higher. A fluorescent member having both a satisfactory thermal conductivity and a satisfactory fluorescent property is provided without requiring a high-temperature sintering process (a high-temperature process at a temperature higher than 250° C.). Further, a method for manufacturing such a fluorescent member and a light-emitting apparatus using such a fluorescent member are provided.
    Type: Application
    Filed: July 22, 2020
    Publication date: October 14, 2021
    Inventors: Junichi TATAMI, Emi TAKAHASHI, Takuma TAKAHASHI
  • Patent number: 11111433
    Abstract: Provided are a transparent fluorescent sialon ceramic having fluorescence and optical transparency; and a method of producing the same. Such a transparent fluorescent sialon ceramic includes a sialon phosphor which contains a matrix formed of a silicon nitride compound represented by the formula Mx(Si,Al)y(N,O)z (here, M represents at least one selected from the group consisting of Li, alkaline earth metals, and rare earth metals, 0?x/z<3, and 0<y/z<1) and a luminescent center element.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: September 7, 2021
    Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, KANAGAWA INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takuma Takahashi, Junichi Tatami, Yuki Sano, Takehiko Tanaka, Masahiro Yokouchi
  • Patent number: 11078416
    Abstract: Provided are a transparent fluorescent sialon ceramic having fluorescence and optical transparency; and a method of producing the same. Such a transparent fluorescent sialon ceramic includes a sialon phosphor which contains a matrix formed of a silicon nitride compound represented by the formula Mx(Si,Al)y(N,O)z (here, M represents at least one selected from the group consisting of Li, alkaline earth metals, and rare earth metals, 0?x/z<3, and 0<y/z<1) and a luminescent center element.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: August 3, 2021
    Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, KANAGAWA INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takuma Takahashi, Junichi Tatami, Yuki Sano, Takehiko Tanaka, Masahiro Yokouchi
  • Patent number: 10982140
    Abstract: A nitride phosphor particle dispersion-type sialon ceramic of the present invention includes a matrix formed of a sialon-based compound; and at least one nitride phosphor which is dispersed in the matrix and contains a luminescence center element.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 20, 2021
    Assignees: KANAGAWA INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Takuma Takahashi, Junichi Tatami, Ippei Kokubun, Masahiro Yokouchi
  • Publication number: 20190185744
    Abstract: A nitride phosphor particle dispersion-type sialon ceramic of the present invention includes a matrix formed of a sialon-based compound; and at least one nitride phosphor which is dispersed in the matrix and contains a luminescence center element.
    Type: Application
    Filed: August 25, 2017
    Publication date: June 20, 2019
    Inventors: Takuma TAKAHASHI, Junichi TATAMI, Ippei KOKUBUN, Masahiro YOKOUCHI
  • Patent number: 10323168
    Abstract: A production process for a crystal oriented ceramics includes: a first step of preparing composite particles formed of particles having magnetic anisotropy having magnetic susceptibility anisotropy and seed particles having magnetic susceptibility anisotropy less than or equal to 1/10 of the magnetic susceptibility anisotropy of the particles having magnetic anisotropy and are formed of an inorganic compound having an anisotropic shape in which a crystal axis intended to be corresponds to a minor axis or a major axis; a second step of adding raw material powder including the composite particles to a solvent to prepare a slurry a third step of preparing a green compact by disposing the slurry in a static magnetic field of ?0.1 tesla and drying the slurry in a state in which crystal axes of the seed particles in a major axis direction are in one direction; and a fourth step of sintering the green compact.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: June 18, 2019
    Assignee: Kanagawa Institute of Industrial Science and Technology
    Inventors: Takuma Takahashi, Junichi Tatami, Nanako Sugimoto
  • Publication number: 20180044568
    Abstract: A production process for a crystal oriented ceramics includes: a first step of preparing composite particles formed of particles having magnetic anisotropy having magnetic susceptibility anisotropy and seed particles having magnetic susceptibility anisotropy less than or equal to 1/10 of the magnetic susceptibility anisotropy of the particles having magnetic anisotropy and are formed of an inorganic compound having an anisotropic shape in which a crystal axis intended to be corresponds to a minor axis or a major axis; a second step of adding raw material powder including the composite particles to a solvent to prepare a slurry a third step of preparing a green compact by disposing the slurry in a static magnetic field of >0.1 tesla and drying the slurry in a state in which crystal axes of the seed particles in a major axis direction are in one direction; and a fourth step of sintering the green compact.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 15, 2018
    Applicants: Kanagawa Institute of Industrial Science and Technology, National University Corporation YOKOHAMA National University
    Inventors: Takuma TAKAHASHI, Junichi TATAMI, Nanako SUGIMOTO
  • Patent number: 9879168
    Abstract: There is provided a method for producing hexagonal boron nitride, including a heating step of heating a mixture containing boron carbide and an alkaline earth metal compound under an ammonia atmosphere at 1300-1500° C. to obtain a product containing hexagonal boron nitride, wherein a molar ratio of the boron carbide to the alkaline earth metal compound in the mixture is 0.5-2.0.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: January 30, 2018
    Assignee: Denka Company Limited
    Inventors: Junichi Tatami, Midori Sotokawa, Koki Ikarashi, Hideki Hirotsuru
  • Publication number: 20170073578
    Abstract: Provided are a transparent fluorescent sialon ceramic having fluorescence and optical transparency; and a method of producing the same. Such a transparent fluorescent sialon ceramic includes a sialon phosphor which contains a matrix formed of a silicon nitride compound represented by the formula Mx(Si,Ai)y(N,O)z (here, M represents at least one selected from the group consisting of Li, alkaline earth metals, and rare earth metals, 0?x/z<3, and 0<y/z<1) and a luminescent center element.
    Type: Application
    Filed: March 6, 2015
    Publication date: March 16, 2017
    Applicants: Kanagawa Academy of Science and Technology, National University Corporation YOKOHAMA National University
    Inventors: Takuma Takahashi, Junichi Tatami, Yuki Sano, Takehiko Tanaka, Masahiro Yokouchi
  • Publication number: 20160333246
    Abstract: There is provided a method for producing hexagonal boron nitride, including a heating step of heating a mixture containing boron carbide and an alkaline earth metal compound under an ammonia atmosphere at 1300-1500° C. to obtain a product containing hexagonal boron nitride, wherein a molar ratio of the boron carbide to the alkaline earth metal compound in the mixture is 0.5-2.0.
    Type: Application
    Filed: January 8, 2015
    Publication date: November 17, 2016
    Applicants: Denka Company Limited, National University Corporation Yokohama National University
    Inventors: Junichi Tatami, Midori Sotokawa, Koki Ikarashi, Hideki Hirotsuru
  • Patent number: 8491817
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 23, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8482192
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8475680
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8450923
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 28, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Publication number: 20110058582
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamatani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Publication number: 20110057149
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2 ??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamanani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Publication number: 20110058583
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamanani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Patent number: 7612006
    Abstract: To provide a sintered silicon nitride with conductivity and densification, an oxide of titanium group elements, such as titanium oxide, hafnium oxide, zirconium oxide and the like, aluminum oxide and/or aluminum nitride is added as needed to silicon nitride-oxidant of rare-earth elements-aluminum oxide system or silicon nitride-oxide of rare-earth elements-magnesia system, and then specified quantity of carbon nonotube (CNT) is added to the above mixture. CNT generates silicon carbide after the reaction with contiguous or proximal silicon nitride and the like depending on the sintering duration at high temperature. Since silicon carbide is generated along with nanotubes, the silicon carbide functions as conductor with excellent heat resistance, corrosion resistance and the like.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: November 3, 2009
    Assignee: Yokohama TLO Company, Ltd.
    Inventors: Katsutoshi Komeya, Junichi Tatami, Takeshi Meguro, Tomofumi Katashima, Toru Wakihara