Patents by Inventor Jun Kaneda

Jun Kaneda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10559813
    Abstract: The negative electrode includes a current collector, a negative electrode active material layer arranged on a surface of the current collector, and a protective layer arranged on a surface of the negative electrode active material layer. The negative electrode active material layer includes a first negative electrode active material having an aspect ratio defined as “a”/“b” to fall in a range of from two or more to eight or less when a length of the major axis is defined “a” and a length of the minor axis is defined “b.” The protective layer includes a ceramic powder.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: February 11, 2020
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Atsushi Saito, Tatsuya Eguchi, Manabu Miyoshi, Jun Kaneda, Tomokuni Abe, Hiroki Oshima
  • Patent number: 9966607
    Abstract: A polymer compound for use as a binder for a negative electrode of an electrical storage device is formed by condensing polyacrylic acid and a multifunctional amine represented by the following formula (1), in which Y represents a straight chain alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R1 and R2 each independently represent one or more hydrogen atoms, methyl groups, ethyl groups, trifluoromethyl groups, or methoxy groups.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 8, 2018
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yusuke Sugiyama, Nobuhiro Goda, Masakazu Murase, Takeshi Kondo, Yuta Kawamoto, Tomokuni Abe, Yuta Nakagawa, Jun Kaneda
  • Publication number: 20180097223
    Abstract: The negative electrode includes a current collector, a negative electrode active material layer arranged on a surface of the current collector, and a protective layer arranged on a surface of the negative electrode active material layer. The negative electrode active material layer includes a first negative electrode active material having an aspect ratio defined as “a”/“b” to fall in a range of from two or more to eight or less when a length of the major axis is defined “a” and a length of the minor axis is defined “b.” The protective layer includes a ceramic powder.
    Type: Application
    Filed: April 5, 2016
    Publication date: April 5, 2018
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Atsushi SAITO, Tatsuya EGUCHI, Manabu MIYOSHI, Jun KANEDA, Tomokuni ABE, Hiroki OSHIMA
  • Publication number: 20180083292
    Abstract: A cell catalyst composition according to the present invention includes a carbon catalyst granule and a binder resin, and at least a part of the binder resin includes a resin (B) including a hydrophilic functional group. The carbon catalyst granule is (i) a carbon catalyst granule wherein carbon catalyst (A) particles are bound to each other by using at least the resin (B), or/and (ii) a carbon catalyst granule wherein carbon catalyst (A) particles form a sintered body and are thereby bound to each other. The carbon catalyst (A) includes a carbon element, a nitrogen element, and a base metal element as constituent elements. Further, an average particle diameter of the carbon catalyst granule is 0.5 to 100 ?m, and a sphericity of the carbon catalyst granule is equal to or greater than 0.5.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 22, 2018
    Inventors: Jun KANEDA, Hiroto WATANABE, Naoki DEGUCHI
  • Publication number: 20170324094
    Abstract: A polymer compound for use as a binder for a negative electrode of an electrical storage device is formed by condensing polyacrylic acid and a multifunctional amine represented by the following formula (1), in which Y represents a straight chain alkyl group having 1 to 4 carbon atoms, a phenylene group, or an oxygen atom, and R1 and R2 each independently represent one or more hydrogen atoms, methyl groups, ethyl groups, trifluoromethyl groups, or methoxy groups.
    Type: Application
    Filed: October 20, 2015
    Publication date: November 9, 2017
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yusuke SUGIYAMA, Nobuhiro GODA, Masakazu MURASE, Takeshi KONDO, Yuta KAWAMOTO, Tomokuni ABE, Yuta NAKAGAWA, Jun KANEDA
  • Patent number: 9716267
    Abstract: A parameter for producing a positive electrode having excellent safety, and a positive electrode active material layer satisfying the parameter. The positive electrode active material layer includes a first positive electrode active material, a second positive electrode active material having a lower charge/discharge potential than the first positive electrode active material, and an additive. When the first positive electrode active material tap density is defined as dt1, the second positive electrode active material tap density is defined as dt2, a true density of the additive is defined as d3, a mass percentage of the first positive electrode active material is defined as Wt1, a mass percentage of the second positive electrode active material is defined as Wt2, a mass percentage of the additive is defined as Wt3, and a porosity of the positive electrode active material layer is defined as p, the positive electrode active material layer satisfies (1?p)×(Wt1/dt1)/((Wt1/dt1)+(Wt2/dt2)+(Wt3/d3))<0.38.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: July 25, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tatsuya Eguchi, Takeshi Maki, Manabu Miyoshi, Yuuhi Sato, Jun Kaneda, Yusuke Yamamoto, Takahiro Sugioka
  • Publication number: 20170018764
    Abstract: A parameter for producing a positive electrode having excellent safety, and a positive electrode active material layer satisfying the parameter. The positive electrode active material layer includes a first positive electrode active material, a second positive electrode active material having a lower charge/discharge potential than the first positive electrode active material, and an additive. When the first positive electrode active material tap density is defined as dt1, the second positive electrode active material tap density is defined as dt2, a true density of the additive is defined as d3, a mass percentage of the first positive electrode active material is defined as Wt1, a mass percentage of the second positive electrode active material is defined as Wt2, a mass percentage of the additive is defined as Wt3, and a porosity of the positive electrode active material layer is defined as p, the positive electrode active material layer satisfies (1?p)×(Wt1/dt1)/((Wt1/dt1)+(Wt2/dt2)+(Wt3/d3))<0.38.
    Type: Application
    Filed: December 26, 2014
    Publication date: January 19, 2017
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tatsuya EGUCHI, Takeshi MAKI, Manabu MIYOSHI, Yuuhi SATO, Jun KANEDA, Yusuke YAMAMOTO, Takahiro SUGIOKA
  • Publication number: 20150214554
    Abstract: A cell catalyst composition according to the present invention includes a carbon catalyst granule and a binder resin, and at least a part of the binder resin includes a resin (B) including a hydrophilic functional group. The carbon catalyst granule is (i) a carbon catalyst granule wherein carbon catalyst (A) particles are bound to each other by using at least the resin (B), or/and (ii) a carbon catalyst granule wherein carbon catalyst (A) particles form a sintered body and are thereby bound to each other. The carbon catalyst (A) includes a carbon element, a nitrogen element, and a base metal element as constituent elements. Further, an average particle diameter of the carbon catalyst granule is 0.5 to 100 ?m, and a sphericity of the carbon catalyst granule is equal to or greater than 0.5.
    Type: Application
    Filed: August 1, 2013
    Publication date: July 30, 2015
    Applicant: TOYO INK SC HOLDINGS CO., LTD.
    Inventors: Jun Kaneda, Hiroto Watanabe, Naoko Deguchi
  • Patent number: 8461075
    Abstract: The present invention relates to recording material having a laser coloring layer, wherein the laser coloring layer comprises one or more materials selected from among pigments, dyes and inorganic materials, and the laser coloring layer exhibits absorption at a wavelength within a range from 700 to 12,000 nm. The recording material of the present invention has a laser coloring layer of a desired hue, such as yellow, cyan, magenta, orange, white or black, and by conducting printing by laser irradiation, a recorded item with excellent color tone can be obtained.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: June 11, 2013
    Assignee: Toyo Ink Mfg. Co., Ltd.
    Inventors: Norifumi Watanabe, Yoshiyuki Onai, Jun Kaneda, Atsushi Katsuya, Kenshiro Shimada
  • Publication number: 20080113861
    Abstract: The present invention relates to recording material having a laser coloring layer, wherein the laser coloring layer comprises one or more materials selected from among pigments, dyes and inorganic materials, and the laser coloring layer exhibits absorption at a wavelength within a range from 700 to 12,000 nm. The recording material of the present invention has a laser coloring layer of a desired hue, such as yellow, cyan, magenta, orange, white or black, and by conducting printing by laser irradiation, a recorded item with excellent color tone can be obtained.
    Type: Application
    Filed: September 2, 2005
    Publication date: May 15, 2008
    Applicant: TOKYO INK MFG. CO., LTD.
    Inventors: Norifumi Watanabe, Yoshiyuki Onai, Jun Kaneda, Atsushi Katsuya, Kenshiro Shimada
  • Patent number: 6648954
    Abstract: A water-based pigment dispersion comprising 100 parts by weight of a pigment, 3 to 30 parts by weight of a sulfonic acid group-containing pigment derivative and water, wherein the sulfonic acid group-containing pigment derivative has only one sulfonic acid group in a molecule of a pigment of which the type is the same as the type of the pigment to be dispersed, the sulfonic acid group forms at least one salt selected from the group consisting of ammonia salt, an organic amine salt and a salt in which at least 15% of the sulfonic acid group is liberated and the rest is a salt with monovalent metal, the content of metal ion having a valence of at least 2 in a solid matter of the above water-based pigment dispersion is 500 ppm or less, and the above pigment is dispersed in water according to electrostatic repulsion due to the sulfonic acid group-containing pigment derivative adsorbed on the particle surface of the pigment, an inkjet recording liquid containing the same and process for the production thereof.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: November 18, 2003
    Assignee: Toyo Ink Mfg. Co., Ltd.
    Inventors: Toshiyuki Uemura, Jun Kaneda, Eriko Suzuki, Takashi Negishi, Seiji Aida
  • Publication number: 20010029870
    Abstract: A water-based pigment dispersion comprising 100 parts by weight of a pigment, 3 to 30 parts by weight of a sulfonic acid group-containing pigment derivative and water, wherein the sulfonic acid group-containing pigment derivative has only one sulfonic acid group in a molecule of a pigment of which the type is the same as the type of the pigment to be dispersed, the sulfonic acid group forms at least one salt selected from the group consisting of ammonia salt, an organic amine salt and a salt in which at least 15% of the sulfonic acid group is liberated and the rest is a salt with monovalent metal, the content of metal ion having a valence of at least 2 in a solid matter of the above water-based pigment dispersion is 500 ppm or less, and the above pigment is dispersed in water according to electrostatic repulsion due to the sulfonic acid group-containing pigment derivative adsorbed on the particle surface of the pigment, an inkjet recording liquid containing the same and process for the production thereof.
    Type: Application
    Filed: March 5, 2001
    Publication date: October 18, 2001
    Inventors: Toshiyuki Uemura, Jun Kaneda, Eriko Suzuki, Takashi Negishi, Seiji Aida