Patents by Inventor Jun Kawanabe

Jun Kawanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150346361
    Abstract: A radiation imaging apparatus includes pixels arranged to form an array, sensors including conversion elements dispersed in the array to monitor radiation, a processing circuit for processing signals from the sensors, first signal lines for transmitting a signal from at least one of the sensors to the processing circuit, and second signal lines extending in a direction parallel to the first signal lines and not directly connected to the pixels and the conversion elements or connected to at least one of the pixels and at least one of the sensors. The processing circuit determines a value of a signal generated by each sensor based on a difference between a value of a signal appearing on the first signal line and a value of a signal appearing on the second signal line.
    Type: Application
    Filed: May 26, 2015
    Publication date: December 3, 2015
    Inventors: Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 9190437
    Abstract: A detection apparatus includes a transistor disposed on a substrate, a conversion element disposed above the transistor and connected to the transistor, a capacitor connected in parallel with conversion element to the transistor, the capacitor including, between the substrate and the conversion element, an ohmic contact part connected to the conversion element, a semiconductor part connected to the ohmic contact part, and an electrically conductive part disposed at a location opposite to the semiconductor part and the ohmic contact part via an insulating layer, and a potential supplying unit configured to selectively supply a first electric potential to the electrically conductive part to accumulate charge carriers in the semiconductor part and a second electric potential to the electrically conductive part to deplete the semiconductor part. The detection apparatus configured in the above-described manner is capable of controlling pixel capacitance thereby achieving a high signal-to-noise ratio.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Kawanabe, Chiori Mochizuki, Minoru Watanabe, Masato Ofuji, Keigo Yokoyama, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20150316664
    Abstract: A pixel includes a conversion element detecting radiation, and a switch between the element and a signal line. A readout unit reads out a signal on the signal line. The readout unit includes a reset unit that resets a potential of the signal line. A period during which the readout unit reads out a signal on the signal line includes a first period during which the signal line is reset, and a signal on the signal line in a state that the switch is not turned on is read out, and a second period during which the signal line is reset, and a signal on the signal line due to the switch being turned on is read out. The processing unit calculates a difference between the signals read out in the second and first periods.
    Type: Application
    Filed: April 27, 2015
    Publication date: November 5, 2015
    Inventors: Kentaro Fujiyoshi, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Hiroshi Wayama
  • Publication number: 20150316661
    Abstract: A radiation imaging apparatus has a plurality of pixels including a plurality of imaging pixels for obtaining a radiation image and a detecting pixel for detecting radiation, a plurality of column signal lines, and a detection signal line corresponding to the detecting pixel. Each of the imaging pixels includes a first conversion element configured to convert radiation into an electrical signal, and a first switch arranged between the first conversion element and a corresponding column signal line among the plurality of column signal lines. The detecting pixel includes a second conversion element configured to convert radiation into an electrical signal, and a second switch arranged between the second conversion element and the detection signal line.
    Type: Application
    Filed: April 27, 2015
    Publication date: November 5, 2015
    Inventors: Kentaro Fujiyoshi, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Hiroshi Wayama, Kazuya Furumoto
  • Publication number: 20150319382
    Abstract: A radiation imaging apparatus includes a plurality of conversion elements configured to convert radiation into an electric signal to obtain a radiation image, a sensor for monitoring radiation, a processing unit configured to process signals output from output electrodes of the plurality of conversion elements and an output electrode of the sensor, and a shield. The signal output from the output electrode of the sensor is supplied to the processing unit via a signal line. The shield is arranged such that capacitive coupling between the output electrodes of the plurality of conversion elements and the signal line is reduced.
    Type: Application
    Filed: April 22, 2015
    Publication date: November 5, 2015
    Inventors: Jun Kawanabe, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 9165957
    Abstract: A detecting device includes a conversion device having a substrate, a pixel electrode formed of a transparent conductive oxide, a impurity semiconductor portion, and a semiconductor portion, the pixel electrode, impurity semiconductor portion, and semiconductor portion having been formed upon the substrate in that order from the substrate side. The impurity semiconductor portion includes a first region including a place in contact with the pixel electrode, and a second region situated nearer to the semiconductor portion than the first region. Concentration of dopant in the second region is higher than concentration of dopant in the first region.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: October 20, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Keigo Yokoyama, Minoru Watanabe, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20150234056
    Abstract: A radiation detection apparatus includes conversion elements including a first electrode, a semiconductor layer, and a second electrode that are divided for each pixel; switching elements electrically connected to the first electrodes; and a first insulating layer that separates the conversion elements of adjacent pixels. The semiconductor layer is located between the first and second electrodes. A periphery of the semiconductor layer is located outside peripheries of the first and second electrodes. The semiconductor layer includes a first impurity semiconductor layer, a second impurity semiconductor layer, and an intrinsic semiconductor layer located between the first and second impurity semiconductor layers. Parameters of the apparatus are defined to set a residual charge 10 ?ts after the switching element is turned on to be not higher than 2%.
    Type: Application
    Filed: January 28, 2015
    Publication date: August 20, 2015
    Inventors: Masato Ofuji, Minoru Watanabe, Keigo Yokoyama, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 9093347
    Abstract: A detecting apparatus includes a substrate that permits visible light to pass therethrough, a converting element that includes a pixel electrode, an impurity semiconductor layer, and a semiconductor layer arranged in that order from a side adjacent to the substrate and is configured to convert radiation or light into charge, and a light source configured to emit the visible light through the substrate to the converting element. The pixel electrode includes a metal layer that permits the visible light to pass therethrough.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: July 28, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20150194952
    Abstract: An active matrix panel includes a gate line connected to control electrodes of a plurality of transistors; and a drive circuit supplying the gate line with a conducting voltage and a non-conducting voltage. The drive circuit includes a shift register including a plurality of shift register unit circuits connected to each other, and a demultiplexer including a plurality of demultiplexer unit circuits into which output signals of the shift register unit circuits are input. The demultiplexer unit circuit includes a first transistor for supplying the gate line with the conducting voltage, and a second transistor for supplying the gate line with the non-conducting voltage. The first transistor is changed from a non-conducting state into a conducting state when the second transistor is in the conducting state.
    Type: Application
    Filed: March 24, 2015
    Publication date: July 9, 2015
    Inventors: Masato Ofuji, Chiori Mochizuki, Minoru Watanabe, Keigo Yokoyama, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 9024676
    Abstract: An active matrix panel includes a gate line connected to control electrodes of a plurality of transistors; and a drive circuit supplying the gate line with a conducting voltage and a non-conducting voltage. The drive circuit includes a shift register including a plurality of shift register unit circuits connected to each other, and a demultiplexer including a plurality of demultiplexer unit circuits into which output signals of the shift register unit circuits are input. The demultiplexer unit circuit includes a first transistor for supplying the gate line with the conducting voltage, and a second transistor for supplying the gate line with the non-conducting voltage. The first transistor is changed from a non-conducting state into a conducting state when the second transistor is in the conducting state.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: May 5, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masato Ofuji, Chiori Mochizuki, Minoru Watanabe, Keigo Yokoyama, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20140353470
    Abstract: A method of manufacturing a detection apparatus including pixels is provided. The method includes forming an organic insulation layer above a substrate above which a switching element is formed, forming pixel electrodes divided for individual pixels above the organic insulation layer; forming an inorganic material portion above a portion of the organic insulation layer, which is uncovered with the pixel electrodes, forming an inorganic insulation film covering the plurality of pixel electrodes and the inorganic material portion, forming a semiconductor film covering the inorganic insulation film, and dividing the semiconductor film for individual pixels by etching using a stacked structure of the inorganic material portion and the inorganic insulation film as an etching stopper.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Inventors: Jun Kawanabe, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20140339561
    Abstract: A detecting device includes a conversion device having a substrate, a pixel electrode formed of a transparent conductive oxide, a impurity semiconductor portion, and a semiconductor portion, the pixel electrode, impurity semiconductor portion, and semiconductor portion having been formed upon the substrate in that order from the substrate side. The impurity semiconductor portion includes a first region including a place in contact with the pixel electrode, and a second region situated nearer to the semiconductor portion than the first region. Concentration of dopant in the second region is higher than concentration of dopant in the first region.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Keigo Yokoyama, Minoru Watanabe, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20140339431
    Abstract: A detecting apparatus includes a substrate that permits visible light to pass therethrough, a converting element that includes a pixel electrode, an impurity semiconductor layer, and a semiconductor layer arranged in that order from a side adjacent to the substrate and is configured to convert radiation or light into charge, and a light source configured to emit the visible light through the substrate to the converting element. The pixel electrode includes a metal layer that permits the visible light to pass therethrough.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 8878972
    Abstract: A source follower connection line connects a gate of a source follower thin film transistor in a first pixel with a gate of a source follower thin film transistor in a second pixel, between adjacent first and second pixel, and a driving circuit turns the transfer thin film transistor in the first pixel region ON and turns the transfer thin film transistor in the second pixel OFF to make the transfer thin film transistor in the first pixel region output the signal of the first pixel.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Wayama, Chiori Mochizuki, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi
  • Patent number: 8866093
    Abstract: In a method of manufacturing a detection device including a plurality of pixels arrayed on a substrate, the pixels each including a switch element and a conversion element including an impurity semiconductor layer disposed on an electrode, which is disposed above the switch element, which is isolated per pixel, and which is made of a transparent conductive oxide joined to the switch element, and further including an interlayer insulating layer, which is made of an organic material, which is disposed between the switch elements and the electrodes, and which covers the switch elements, the method includes insulating members each made of an inorganic material and disposed to cover the interlayer insulating layer between adjacent two of the electrodes in contact with the interlayer insulating layer, and forming an impurity semiconductor film covering the insulating members and the electrodes and becoming the impurity semiconductor layer.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: October 21, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kentaro Fujiyoshi, Chiori Mochizuki, Minoru Watanabe, Masato Ofuji, Keigo Yokoyama, Jun Kawanabe, Hiroshi Wayama
  • Patent number: 8822939
    Abstract: A matrix substrate which realizes high operation speed and high reliability and which is capable of obtaining a high-quality image while the number of connection terminals is limited is provided. The matrix substrate includes pixels arranged in a matrix, N driving lines arranged in a row direction, P connection terminals where P is less than N, a demultiplexer which is disposed between the connection terminals and the driving lines and which includes first polycrystalline semiconductor TFTs and first connection terminals. The demultiplexer further includes second polycrystalline semiconductor TFTs and the second control lines used to maintain the driving lines to have non-selection voltages which bring the pixels to non-selection states between one of the connection terminals and two or more of the driving lines.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: September 2, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Chiori Mochizuki, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 8785873
    Abstract: A detection apparatus comprising a substrate; a switching element arranged over the substrate and including a plurality of electrodes; a conductive line arranged over the substrate and electrically connected to a first electrode of the plurality of electrodes of the switching element; and a conversion element including a semiconductor layer arranged over the switching element and the conductive line and arranged between two electrodes, one electrode of the two electrodes being electrically connected to a second electrode of the plurality of electrodes of the switching element, is provided. The one electrode of the conversion element is arranged over the switching element and the conductive line through a space formed between the one electrode and the first electrode of the switching element or between the one electrode and the conductive line.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 22, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Chiori Mochizuki, Minoru Watanabe, Takamasa Ishii, Jun Kawanabe, Kentaro Fujiyoshi
  • Patent number: 8759785
    Abstract: A stacked-type detection apparatus including a plurality of pixels arranged at small intervals is configured to have low capacitance associated with signal lines and/or driving lines. With this novel configuration, small time constant and high-speed driving capability can be achieved in the signal lines and/or driving lines. The plurality of pixels in the detection apparatus are arranged in a row direction and a column direction on an insulating substrate. Each pixel includes a conversion element and a switch element, the conversion element is disposed above the switch element. A driving line disposed below the conversion elements is connected to switch elements arranged in the row direction, and a signal line is connected to switch elements arranged in the column direction. The signal line includes a conductive layer embedded in an insulating member, the insulating member is disposed in a layer lower than an uppermost surface portion of the driving line.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 24, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takamasa Ishii, Chiori Mochizuki, Minoru Watanabe, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Publication number: 20140151769
    Abstract: A detection apparatus includes a conversion layer configured to convert incident light or radiation into a charge, electrodes configured to collect a charge produced as a result of the conversion by the conversion layer, and impurity semiconductor layers arranged between the electrodes and the conversion layer. The conversion layer is arranged over the electrodes so as to cover the electrodes. A part of the conversion layer which covers a region between an adjacent pair of the electrodes includes a portion smaller in film thickness than a part of the conversion layer which covers edges of the electrodes.
    Type: Application
    Filed: November 20, 2013
    Publication date: June 5, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi Wayama, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Akiya Nakayama
  • Publication number: 20140154833
    Abstract: A manufacturing method for a detection apparatus is provided. The method includes depositing a first impurity semiconductor layer and a first intrinsic semiconductor layer in this order on a plurality of first electrodes arranged in an array above a substrate. The method also includes patterning the first intrinsic semiconductor layer and the first impurity semiconductor layer and thereby dividing the first intrinsic semiconductor layer and the first impurity semiconductor layer so as to cover each of the plurality of first electrodes separately. The method further includes depositing a second intrinsic semiconductor layer on the patterned first intrinsic semiconductor layer.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 5, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi Wayama, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi