Patents by Inventor Jun-Kyu Han

Jun-Kyu Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200202068
    Abstract: Provided are a method and apparatus for classifying and storing input information based on machine learning and artificial intelligence and automatically inputting the stored information. According to an exemplary embodiment, input information is classified and stored using machine learning, an input item to which the stored input information is to be input is identified using machine learning, and the stored input information is input to the input item.
    Type: Application
    Filed: January 22, 2020
    Publication date: June 25, 2020
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Jun Kyu Han
  • Patent number: 10591226
    Abstract: An embodiment relates to a heat transfer device including a heat generating device configured to generate heat having predetermined intensity by a user, a cover in contact with a body of the user while covering the heat generating device, and a heat transfer medium provided between the heat generating device and the cover to transfer the heat generated by the heat generating device, wherein the heat transfer medium is a structure that is formed by entangling a single wire having a predetermined length and has a predetermined width and a predetermined height, and is a structure that is compressed in an axial direction when being in contact with the body of the user and thus has a Poisson's ratio of 0.5 or higher. Thus, a structural change in the heat generating device is not required and only a material in contact with the heat generating device is changed, so that generated heat may more rapidly reach the body of the user.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 17, 2020
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae Hun Seol, Jun Kyu Han, Hyun Woo Kim, Myung Ill You
  • Patent number: 10543478
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the method of preparing a catalyst for oxidative dehydrogenation includes a first step of preparing an aqueous iron-metal precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in distilled water; a second step of obtaining a slurry of an iron-metal oxide by reacting the aqueous iron-metal precursor solution with ammonia water in a coprecipitation bath to form an iron-metal oxide (step b) and then filtering the iron-metal oxide; and a third step of heating the iron-metal oxide slurry. In accordance with the present invention, a metal oxide catalyst, as a catalyst for oxidative dehydrogenation, having a high spinel phase structure proportion may be economically prepared by a simple process.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: January 28, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Kyong Yong Cha, Myung Ji Suh, Dong Hyun Ko, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang, Seong Min Kim
  • Publication number: 20200001279
    Abstract: Provided is a method for producing a zinc ferrite catalyst, the method comprising: preparing a zinc precursor solution; preparing a ferrite precursor solution; obtaining a first precipitate by bringing the zinc precursor solution into contact with an alkaline solution; obtaining a second precipitate by adding the ferrite precursor solution to the first precipitate; and drying and firing the second precipitate after filtering the second precipitate.
    Type: Application
    Filed: December 19, 2018
    Publication date: January 2, 2020
    Inventors: Jun Kyu HAN, Dong Hyun KO, Kyong Yong CHA, Sang Jin HAN, Sunhwan HWANG, Seongmin KIM
  • Patent number: 10518250
    Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 31, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Dae Heung Choi, Dong Hyun Ko, Kyong Yong Cha, Myung Ji Suh, Ye Seul Hwang, Sun Hwan Hwang, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han, Jun Kyu Han
  • Patent number: 10486150
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 26, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Sun Hwan Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han
  • Publication number: 20190329226
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1 of the present invention, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 31, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Myung Ji SUH, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Ye Seul HWANG, Jun Kyu HAN, Sun Hwan HWANG
  • Publication number: 20190299193
    Abstract: A method of preparing a catalyst for oxidative dehydrogenation that includes coprecipitation and injecting inert gas or air at a specific time point to reduce the ratio of an inactive ?-Fe2O3 crystal structure, thereby improving the activity of the catalyst. Also provided is a method of performing oxidative dehydrogenation using the catalyst. When oxidative dehydrogenation of butene is performed using the catalyst, side reaction may be reduced, and selectivity for butadiene may be improved, providing butadiene with high productivity.
    Type: Application
    Filed: April 26, 2018
    Publication date: October 3, 2019
    Inventors: Sang Jin HAN, Dong Hyun KO, Kyong Yong CHA, Jun Kyu HAN, Sun Hwan HWANG
  • Patent number: 10343958
    Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 9, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Jun Han Kang, Dong Hyun Ko, Seong Min Kim, Hyun Seok Nam, Joo Hyuck Lee, Kyong Yong Cha, Dae Heung Choi, Sang Jin Han, Jun Kyu Han, Sun Hwan Hwang, Ye Seul Hwang
  • Publication number: 20190184388
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 20, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN
  • Patent number: 10315969
    Abstract: Provided are a method of preparing a multicomponent bismuth-molybdenum composite metal oxide catalyst, and a multicomponent bismuth-molybdenum composite metal oxide catalyst prepared thereby. According to the preparation method, since the almost same structure as that of a typical quaternary bismuth-molybdenum catalyst may be obtained by performing two-step co-precipitation, i.e., primary and secondary co-precipitation, of metal components constituting the catalyst, the reduction of catalytic activity due to the deformation of the structure of the catalyst may be suppressed.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: June 11, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Ye Seul Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Jun Kyu Han, Sang Jin Han
  • Publication number: 20190144362
    Abstract: A method of preparing butadiene that includes supplying butene, oxygen, nitrogen, and steam into a reactor filled with a metal oxide catalyst, and performing an oxidative dehydrogenation reaction at a temperature of 300 to 450° C. as a reaction step; after the reaction step, maintaining supplying the butene, oxygen, nitrogen, and steam within a range within which the flow rate change of the butene, oxygen, nitrogen, and steam is less than ±40%, or stopping supplying the butene, and cooling the reactor to a temperature range of 200° C. or lower and higher than 70° C. as a first cooling step; and after the first cooling step, stopping supplying the butene, oxygen, nitrogen, and steam or stopping at least supplying the butene, and cooling the reactor to a temperature of 70° C. or lower as a second cooling step.
    Type: Application
    Filed: September 21, 2017
    Publication date: May 16, 2019
    Inventors: Myung Ji SUH, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN
  • Publication number: 20190134612
    Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 9, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Joo Hyuck LEE, Hyun Seok NAM, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN, Seong Min KIM
  • Publication number: 20190037066
    Abstract: Provided are a terminal device, a remote control system and a control method. The terminal device includes a communicator configured to communicate with a plurality of external devices; a display configured to generate and display a chat window upon receiving an occurrence signal for a predetermined event from a first external device among the plurality of external devices; and a processor configured to control the communicator to connect to at least one second external device related to the predetermined event, wherein the processor is further configured to control the display to display the at least one second external device in the chat window, a message inquiring whether to perform a predetermined job corresponding to the predetermined event, and a graphic user interface (GUI) for selecting whether to perform the predetermined job.
    Type: Application
    Filed: January 5, 2017
    Publication date: January 31, 2019
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun-kyu HAN, Sung-jae PARK
  • Publication number: 20180333702
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation having a porous structure which may easily control heat generation due to high-temperature and high-pressure reaction conditions and side reaction due to the porous structure and thus exhibits superior product selectivity, and a method of preparing the catalyst.
    Type: Application
    Filed: November 30, 2016
    Publication date: November 22, 2018
    Applicant: LG CHEM, LTD.
    Inventors: Myung Ji SUH, Yoon Jae MIN, Dong Hyun KO, Kyong Yong CHA, Se Won BAEK, Jun Kyu HAN
  • Publication number: 20180290126
    Abstract: Disclosed are a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, a catalyst for oxidative dehydrogenation of butene having a high butene conversion rate and superior side reaction inhibition effect and thus having high reactivity and high selectivity for a product by preparing metal oxide nanoparticles and then fixing the prepared metal oxide nanoparticles to a support, and a method of preparing the same are provided.
    Type: Application
    Filed: May 18, 2017
    Publication date: October 11, 2018
    Inventors: Seongmin KIM, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Jun Kyu HAN, Sun Hwan HWANG, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Ye Seul HWANG, Sang Jin HAN
  • Publication number: 20180214854
    Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 2, 2018
    Inventors: Dae Heung CHOI, Dong Hyun KO, Kyong Yong CHA, Myung Ji SUH, Ye Seul HWANG, Sun Hwan HWANG, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN, Jun Kyu HAN
  • Publication number: 20180207621
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the present invention provides a method of preparing a catalyst for oxidative dehydrogenation providing superior selectivity and yield for a conjugated diene according to oxidative dehydrogenation by constantly maintaining pH of a coprecipitation solution using a drip-type double precipitation method to adjust an ?-iron oxide content in a catalyst in a predetermined range.
    Type: Application
    Filed: March 15, 2017
    Publication date: July 26, 2018
    Inventors: Jun Kyu HAN, Dong Hyun KO, Kyong Yong CHA, Myung Ji SUH, Sun Hwan HWANG, Seong Min KIM
  • Publication number: 20180186711
    Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 5, 2018
    Inventors: Myung Ji SUH, Jun Han KANG, Dong Hyun KO, Seong Min KIM, Hyun Seok NAM, Joo Hyuck LEE, Kyong Yong CHA, Dae Heung CHOI, Sang Jin HAN, Jun Kyu HAN, Sun Hwan HWANG, Ye Seul HWANG
  • Publication number: 20180133698
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the method of preparing a catalyst for oxidative dehydrogenation includes a first step of preparing an aqueous iron-metal precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in distilled water; a second step of obtaining a slurry of an iron-metal oxide by reacting the aqueous iron-metal precursor solution with ammonia water in a coprecipitation bath to form an iron-metal oxide (step b) and then filtering the iron-metal oxide; and a third step of heating the iron-metal oxide slurry. In accordance with the present invention, a metal oxide catalyst, as a catalyst for oxidative dehydrogenation, having a high spinel phase structure proportion may be economically prepared by a simple process.
    Type: Application
    Filed: March 7, 2017
    Publication date: May 17, 2018
    Inventors: Kyong Yong CHA, Myung Ji SUH, Dong Hyun KO, Dae Heung CHOI, Ye Seul HWANG, Jun Kyu HAN, Sun Hwan HWANG, Seong Min KIM