Patents by Inventor Jun Long

Jun Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8202816
    Abstract: An adsorbent for desulfurizing cracking gasoline or diesel fuel comprising 1) pillared clay, (2) inorganic oxide binder, (3) an oxide of one or more metals selected from Groups IIB, VB and VIB, and (4) at least one metal accelerant selected from cobalt, nickel, iron and manganese. The adsorbent exhibits excellent abrasion-resistant strength and desulfurization performance.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 19, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Patent number: 8088335
    Abstract: A conversion apparatus for catalytic cracking a hydrocarbon feed to light hydrocarbon comprises at least one riser reactor, a dense bed reactor, a disengager, and a stripper. A dense bed reactor which is separated from disengage, is employed to enforce further cracking hydrocarbon to light olefins, with low methane yield. Moreover, the spent catalysts discharged from the outlet of the dense bed reactor can be introduced into the stripper via a specific catalyst transporting channel, to maintain catalyst concentration in the dense bed reactor that can be advantageous to deeper cracking of the intermediate products to produce more light olefins, particularly propylene.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 3, 2012
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Kejia Xu, Shuandi Hou, Zhijian Da, Chaogang Xie, Jiushun Zhang, Zhanzhu Zhang
  • Publication number: 20110272328
    Abstract: The present invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel. The adsorbent has excellent abrasion-resistance and desulfurization activity. The adsorbent comprises from about 5 to about 35 wt % of alumina, from about 3 to about 30 wt % of silica, from about 10 to about 80 wt % of at least one oxide of metal selected from Groups IIB and VB, from about 3 to about 30 wt % of at least one metal accelerant selected from Groups VIIB and VIII, and from about 0.5 to about 10 wt % of at least one oxide of metal selected from Groups IA and IIA, based on the total weight of the adsorbent.
    Type: Application
    Filed: December 30, 2009
    Publication date: November 10, 2011
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Publication number: 20110241970
    Abstract: A holding device having a printed circuit board includes a base having a securing recess at a top surface thereof, a securing connector fixed in the securing recess and connected with the printed circuit board, a holding shell rotatably covered to the securing connector, and a flexible antenna of flat plate shape. The antenna has a rectangular radiating body, and a strip-shaped connecting portion extended outwards from a side of the radiating body. A free end of the connecting portion is held by the holding shell and rotated to connect with the securing connector electrically and detachably. An exposed portion of the connecting portion is bent so that the radiating body is attached to the top surface of the base.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Inventors: Tun-Ping Wang, Ho-Hsin Chou, Jeng-Hsiang Lee, Jun-Long Wu
  • Patent number: 7980640
    Abstract: An auto-returning drawer rail is implemented in furniture having a drawer cavity and a drawer, and the auto-returning drawer rail has a drawer rail assembly, an auto-returning device and a buffering device. The drawer rail assembly is mounted in the drawer cavity and has a rail bracket, an outer track and an inner track. The auto-returning device is mounted in the drawer rail assembly and has a base, a sliding block, a connector and two springs. The base is mounted on the rail bracket. The sliding block is mounted slidably on the base. The connector is connected securely to the sliding block between the rail bracket and the base and has two clasping tabs engaging the base. The buffering device is mounted in the auto-returning device to prevent the drawer from returning too fast and has a damper and a drive shaft being connected to the connector.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: July 19, 2011
    Inventor: Jun-Long Yang
  • Publication number: 20110139682
    Abstract: The present invention relates to a mesopore material of a catalyst for upgrading acid-containing crude oil. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The present invention further relates to a process for manufacturing said mesopore material and the use thereof. The catalyst prepared from the mesopore material provided in the present invention is suitable for the catalytic upgrading of inferior acid-containing crude oil and for the removal of organic acids, carbon residues and metals in the crude oil, and thus has very good economic benefits.
    Type: Application
    Filed: January 9, 2009
    Publication date: June 16, 2011
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu
  • Publication number: 20110127198
    Abstract: A process for extracting bitumen from problem oil sand ores having low bitumen content and/or high fines content is provided, comprising: mixing the problem oil sand ore with heated water to produce an oil sand slurry; conditioning the oil sand slurry for a period of time sufficient to substantially disperse oil sand lumps and promote the release and coalescence of bitumen flecks from the sand grains; removing a sufficient amount of solids from the conditioned oil sand slurry in a de-sander circuit; and subjecting the solids-reduced oil sand slurry to gravity separation in a bitumen separation vessel to allow the bitumen to float to the top of the vessel to form clean bitumen froth.
    Type: Application
    Filed: November 2, 2010
    Publication date: June 2, 2011
    Applicant: SYNCRUDE CANADA LTD. in trust for the owners of the Syncrude Project
    Inventors: ROBERT SIY, GEORGE CYMERMAN, JUN LONG, JESSICA VANDENBERGHE
  • Patent number: 7923399
    Abstract: A catalyst for converting hydrocarbons includes, based on the weight of the catalyst, 1-60% by weight of a zeolite, 0.1-10% by weight of an assistant catalytic component, 5-98% by weight of a thermotolerant inorganic oxide, and 0-70% by weight of a clay in terms of the oxide. The zeolite is a MFI-structured zeolite-containing phosphor and transition metal(s) or a mixture of the zeolite and a macroporous zeolite, which comprises, based on the weight of the mixture, 75-100% by weight of said MFI-structured zeolite containing phosphor and transition metal(s) and 0-25% by weight of the macroporous zeolite. In terms of the mass of the oxide, the MFI-structured zeolite containing phosphor and transition metal(s) has the following anhydrous chemical formula: (0-0.3)Na2O.(0.3-5.5)Al2O3.(1.0-10)P2O5.(0.7-15)M1xOy.(0.01-5)M2mOn(0-10)RE2O3.(70-97)SiO2??I or (0-0.3)Na2O.(0.3-5)Al2O3.(1.0-10)P2O5.(0.7-15)MpOq.(0-10)RE2O3.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 12, 2011
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Jun Long, Zhijian Da, Huiping Tian, Zhenyu Chen, Weilin Zhang, Xingtian Shu, Jiushun Zhang, Yuxia Zhu, Yujian Liu
  • Publication number: 20110062054
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain gas, hydrogenated naphtha, hydrogenated diesel oil, and hydrogenated tail oil; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products to obtain dry gas, hydrogenated naphtha, liquefied petroleum gas, catalytic cracked gasoline, catalytic cracked diesel oil, and catalytic cracking cycle oil; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions, the light and the heavy fractions or normal catalytic cracking heavy feedstock oil and normal catalytic cracking ligh
    Type: Application
    Filed: December 19, 2008
    Publication date: March 17, 2011
    Inventors: Yongcan Gao, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Patent number: 7903419
    Abstract: A heat dissipation device for dissipating heat from an electronic component (12) mounted on a printed circuit board (10) includes a retention module (30) resting on the printed circuit board, a heat sink (20) disposed on the retention module for contacting the electronic component, a clip (40) for securing the heat sink to the retention module, and a back plate unit mounted below the printed circuit board for engaging with the retention module and supporting the electronic component. The back plate unit includes a back plate (50), a gasket (62) engaging with the back plate, and a bracket (64) being sandwiched between the gasket and the back plate. The gasket has an annular top face contacting the printed circuit board, and a plurality of blocks (6202) contacting the back plate, whereby the gasket can provide a sufficient and uniform support to the electronic component.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: March 8, 2011
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Hao Li, Jun Long, Tao Li
  • Publication number: 20110000818
    Abstract: A catalytic conversion process can convert inferior feedstock to high quality fuel oil and propylene. A inferior feedstock is introduced into first and second reactor zone, wherein the feedstock carry out first step and second step reactions by contacting with catalytic conversion catalyst. Product vapors separate from spent catalyst by gas-solid separation. The spent catalyst is stripped, regenerated by burning off coke and then returns to reactor. The product vapors are introduced into separation system to obtain propylene, gasoline, diesel, fluid catalytic cracking gas oil (FGO) and other products. The FGO is introduced into hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Said hyrotreated FGO and/or extracted FGO return to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics which are good chemical materials.
    Type: Application
    Filed: March 13, 2009
    Publication date: January 6, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING
    Inventors: Youhao Xu, Lishun Dai, Zhigang Zhang, Shouye Cui, Jianhong Gong, Chaogang Xie, Jun Long, Hong Nie, Zhijian Da, Jiushun Zhang, Tao Liu, Anguo Mao
  • Publication number: 20100326888
    Abstract: The present invention provides a catalytic cracking catalyst, processing method and use thereof. When the catalyst is added into a commercial catalytic cracking unit, it has an initial activity of not higher than 80, preferably not higher than 75, more preferably not higher than 70, a self-balancing time of 0.1-50 h, and an equilibrium activity of 35-60. Said method enables the activity and selectivity of the catalyst in the catalytic cracking unit to be more homogeneous and notably improves the selectivity of the catalytic cracking catalyst, so as to obviously reduce the dry gas and coke yields, to sufficiently use steam and to reduce the energy consumption of the FCC unit.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao XU, Shouye CUI, Jun LONG, Jianhong GONG, Zhijian DA, Jiushun ZHANG, Yuxia ZHU, Yibin LUO, Jinlian TANG
  • Publication number: 20100311569
    Abstract: The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive, is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 9, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Wenbin Jiang, Mingde Xu, Huiping Tian, Yibin Luo, Xingtian Shu, Jishun Zhang, Beiyan Chen, Haitao Song
  • Publication number: 20100288675
    Abstract: The present invention relates to a catalyst for converting inferior acid-containing crude oil. Based on the total amount of the catalyst, said catalyst comprises from 1 to 50 wt % of a mesopore material, from 1 to 60 wt % of molecular sieves and from 5 to 98 wt % of thermotolerant inorganic oxides and from 0 to 70 wt % of clays. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The catalyst provided in the present invention is suitable for the catalytic conversion of crude oil having a total acid number of greater than 0.
    Type: Application
    Filed: January 9, 2009
    Publication date: November 18, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu
  • Publication number: 20100270210
    Abstract: A catalyst for catalytically cracking hydrocarbon oils contains a substrate comprising alumina and a molecular sieve, characterized in that the pore distribution of said catalyst is 5-70% of the <2 nm pores, 5-70% of the 2-4 nm pores, 0-10% of the 4-6 nm pores, 20-80% of the 6-20 nm pores, and 0-40% of the 20-100 nm pores, based on the pore volume of pores having a size of no more than 100 nm. The catalyst of this invention has a large BET pore volume, a high capacity for cracking heavy oils, and a high capacity for resisting coking.
    Type: Application
    Filed: June 27, 2008
    Publication date: October 28, 2010
    Inventors: Jun Long, Yujian Liu, Huiping Tian, Liuzhou Zhao, Yuxia Zhu, Zhenyu Chen, Yun Xu, Jing Fan
  • Publication number: 20100213102
    Abstract: A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h?1 and 100 h?1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Application
    Filed: August 7, 2008
    Publication date: August 26, 2010
    Inventors: Youhao Xu, Lishun Dai, Longsheng Tian, Shouye Cui, Jianhong Gong, Chaogang Xie, Jiushun Zhang, Jun Long, Zhijian Da, Hong Nie, Jinbiao Guo, Zhigang Zhang
  • Patent number: 7776775
    Abstract: The present invention provides a cracking catalyst, containing a rare-earth Y-zeolite and a support, which is characterized in that the rare-earth content in crystal lattice of the rare-earth Y-zeolite is 4-15 wt % of RE2O3; the original unit cell size is 2.440-2.465 nm; the equilibrium unit cell size of the catalyst after 100% steam-aging treatment at 800° C. for 17 hours is larger than 2.435 nm; the rare-earth atom content in the support is 1.0-8.0 wt % of the support. The present invention also relates to a preparation process for the same catalyst.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 17, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Du, Zheng Li, Jun Long, Mingde Xu, Zhijian Da, Huiping Tian, Mingyuan He
  • Patent number: 7767611
    Abstract: A modified zeolite beta having an anhydrous chemical formula, by weight % of the oxides, of (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(70-97)SiO2, wherein M is one or more transition metal(s) selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn, x is the number of the atoms of said transition metal M, and y is a number that meets with the requirement of the oxidation state of said transition metal M, is disclosed. The modified zeolite beta can be used as an active component of a cracking catalyst or additive for catalytic cracking of petroleum hydrocarbons.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 3, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Yibin Luo, Zhijian Da, Ying Ouyang, Li Zhuang, Jun Long, Xingtian Shu, Baoning Zong
  • Patent number: 7746643
    Abstract: A heat sink assembly includes a heat sink having a first shoulder and a second shoulder, and a locking device having a retention module, a first clip and a second clip. The first clip has two extension portions engaging with the retention module and a pressing portion between the two extension portions. The second clip comprises a pressing portion located on the second shoulder, an axle connecting with the pressing portion and pivotably engaging with the retention module and a locking portion connecting with the pressing portion. The second clip can rotate around the axle thereof when the heat sink assembly is in an unlocked position; the locking portion engages with the retention module and the pressing portion presses the second shoulder of the heat sink toward the retention module when the heat sink assembly is in a locked position.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: June 29, 2010
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Hao Li, Jun Long, Tao Li
  • Publication number: 20100105542
    Abstract: A noble metal-containing titanosilicate material, characterized in that said material is represented with the oxide form of xTiO2.100SiO2.yEOm.zE, wherein x ranges from 0.001 to 50.0; (y+z) ranges from 0.0001 to 20.0 and y/z<5; E represents one or more noble metals selected from the group consisting of Ru, Rh, Pd, Re, Os, Ir, Pt, Ag and Au; m is a number satisfying the oxidation state of E. The crystal grains of said material contain a hollow structure, or a sagging structure. In said material, the synergistic effect between the noble metal and the titanosilicate are enhanced. As compared with the prior art, the selectivity, catalytic activity and stability of the reaction product are obviously increased in the oxidation reaction, e.g. the reaction for preparing propylene oxide by epoxidation of propylene.
    Type: Application
    Filed: March 27, 2008
    Publication date: April 29, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING
    Inventors: Min Lin, Chunfeng Shi, Jun Long, Bin Zhu, Xingtian Shu, Xuhong Mu, Yibin Luo, Xieqing Wang, Yingchun Ru