Patents by Inventor Jun Nakamura

Jun Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200354179
    Abstract: An image forming apparatus includes an image forming unit, an apparatus main body, a conveyance unit, an opening/closing member, a discharge unit, and a stack tray. The conveyance unit conveys a sheet to the image forming unit. The opening/closing member opens and closes relative to the apparatus main body, and, where the opening/closing member is in an open state relative to the apparatus main body, allow making access to the conveyance unit. The discharge unit discharges the sheet on which the image is formed. The stack tray is turned between a first position for stacking sheets on the stack face, and a second position with an angle formed between an underside opposite to the stack face and a horizontal plane that is larger than an angle of the first position, and includes an engagement portion to engage with the apparatus main body in the second position.
    Type: Application
    Filed: April 16, 2020
    Publication date: November 12, 2020
    Inventor: Jun Nakamura
  • Patent number: 10747161
    Abstract: A sheet conveyance apparatus includes a first oblique-feed unit and a second oblique-feed unit configured to convey the sheet while approaching the sheet to an abutment surface; a changeover unit configured to change over an abutment pressure of the first oblique-feed unit on the sheet; and a control unit configured to execute a first operation for driving the first oblique-feed unit at a first speed and the second oblique-feed unit at a second speed and a second operation for driving the first oblique-feed unit at a third speed higher than the first speed and the second oblique-feed unit at a fourth speed higher than the second speed after the sheet is abutted against the abutment surface by the first operation. The control unit controls the changeover unit so that the abutment pressure of the first oblique-feed unit in the second operation is higher than that in the first operation.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: August 18, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Nakamura, So Matsumoto
  • Patent number: 10714715
    Abstract: An electric storage device includes an electrode assembly, a case that includes a defining wall and houses the electrode assembly, a sealing member that is arranged on the defining wall, and a conductive member that is electrically connected to the electrode assembly, the conductive member being supported by the sealing member. At least a portion of the defining wall where the sealing member is arranged includes an aluminum-based metallic material. The sealing member includes a material that is softer than the material for the at least a portion of the defining wall where the sealing member is arranged. The sealing member includes polyphenylene sulfide (PPS) resin and an elastomer. The elastomer is contained in an amount of 2% to 20% by weight. The conductive member is crimped in such a manner that the sealing member is pressed against the defining wall.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: July 14, 2020
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventors: Masakazu Tsutsumi, Hajime Kawamoto, Katsuhiko Okamoto, Shinsuke Yoshitake, Takuma Tonari, Jun Nakamura, Kenji Kouno
  • Patent number: 10662497
    Abstract: A high-strength austenitic stainless steel, which has good hydrogen embrittlement resistance and hydrogen fatigue resistance, has a chemical composition including, in mass %, C: up to 0.10%; Si: up to 1.0%; Mn: not less than 3.0% and less than 7.0 %; Cr: 15 to 30%; Ni: not less than 12.0% and less than 17.0%; Al: up to 0.10%; N: 0.10 to 0.50%; P: up to 0.050%; S: up to 0.050%; at least one of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%; and other elements, the balance being Fe and impurities, wherein the ratio of the minor axis to the major axis of the austenite crystal grains is greater than 0.1, the crystal grain size number of austenite crystal grains is not lower than 8.0, and the tensile strength is not less than 1000 MPa.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: May 26, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Jun Nakamura, Tomohiko Omura, Hiroyuki Hirata, Kana Jotoku, Takahiro Osuki
  • Publication number: 20200131610
    Abstract: This austenitic stainless steel contains, by mass %: C: 0.3% or less, Si: 0.1% to 1.5%, Mn: 5.5% to 20%, P: 0.050% or less, S: 0.005% or less, Cr: 10% to 20%, Ni: 4.0% to 12%, N: 0.40% or less, Cu: 4.0% or less, O: 0.02% or less, and either one or both of Ca: 0.01% or less and Al: 0.3% or less, with a remainder being Fe and inevitable impurities, and the following Formula (1) is satisfied. [Ni]+[Cu]+12.93[C]+1.11[Mn]+0.72[Cr]+0.88[Mo]?0.27[Si]+7.55[N]?29.
    Type: Application
    Filed: March 20, 2018
    Publication date: April 30, 2020
    Applicant: NIPPON STEEL Stainless Steel Corporation
    Inventors: Kazuhisa MATSUMOTO, Masaharu HATANO, Jun NAKAMURA
  • Patent number: 10620276
    Abstract: A magnetic detection device that is reduced in size and thickness, but also accurate, includes a substrate and an element disposed on the substrate and including a magneto-sensitive wire sensing an external magnetic field component in an extending direction and a detection coil looping around the magneto-sensitive wire. The magnetic detection device further includes a magnetic field deflector deflecting an external magnetic field around the magneto-sensitive wire, and having a nonmagnetic material core part and a soft magnetic material shell part covering an outer side of at least part of the core part. The magnetic field deflector has a hollow, rather than solid, structure of soft magnetic material. The soft magnetic material volume is therefore significantly smaller, and the hysteresis caused in the magnetic field deflector is remarkably reduced. With the magnetic detection device, the magnetic field component orthogonal to the substrate is also detected with higher accuracy.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: April 14, 2020
    Assignee: AICHI STEEL CORPORATION
    Inventors: Takashi Shimoto, Jun Nakamura, Ryusuke Yamashita, Tomohiko Nagao, Michiharu Yamamoto
  • Patent number: 10556298
    Abstract: A welded joint having high strength and good hydrogen embrittlement resistance is provided. A welded joint is a welded joint obtained by welding a base material using a welding material. The base material has a chemical composition of, in mass %: C: 0.005 to 0.1%; Si: up to 1.2%; Mn: 2.5 to 6.5%; Ni: 8 to 15%; Cr: 19 to 25%; Mo: 0.01 to 4.5%; V: 0.01 to 0.5%; Nb: 0.01 to 0.5% Al: less than 0.05%; N: 0.15 to 0.45%; O: up to 0.02%; P: up to 0.05%; and S: up to 0.04%, and a balance being iron and impurities, and which satisfies Equation (1). The welding material has a chemical composition which satisfies Equations (1) and (2). Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C?29??(1) 0.31C+0.048Si?0.02Mn?0.056Cr+0.007Ni?0.013Mo??1.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: February 11, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kana Jotoku, Hiroyuki Hirata, Tomohiko Omura, Jun Nakamura, Takahiro Osuki
  • Patent number: 10316383
    Abstract: There is provided an austenitic stainless steel having a high strength and an excellent hydrogen brittleness resistance and further having an excellent machinability. The austenitic stainless steel of the present embodiment has a chemical composition including: in mass %, C: 0.10% or less; Si: 1.0% or less; Mn: 2.1 to 6.0%; P: 0.045% or less; S: 0.1% or less; Ni: 8.0 to 16.0%; Cr: 15.0 to 30.0%; Mo: 1.0 to 5.0%; N: 0.05 to 0.45%; Nb: 0 to 0.50%; and V: 0 to 0.50%, with the balance being Fe and impurities, and satisfying Formula (1). The austenitic stainless steel of the present embodiment has a grain size number of less than 8.0 and a tensile strength of 690 MPa or more. 15?12.6C+1.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: June 11, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Etsuo Dan, Masaaki Terunuma, Takahiro Osuki, Tomohiko Omura, Jun Nakamura
  • Patent number: 10266909
    Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: April 23, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomohiko Omura, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
  • Publication number: 20190112694
    Abstract: There is provided an austenitic stainless steel material having a consistent high-strength across the overall length of the steel material, which has a chemical composition consisting of, in mass percent: C: 0.10% or less, Si: 1.0% or less, Mn: 3 to 8%, P: 0.05% or less, S: 0.03% or less, Ni: 10 to 20%, Cr: 15 to 30%, N: 0.20 to 0.70%, with the balance being Fe and impurities, the austenitic stainless steel material having a grain size number of 6.0 or greater, the grain size number conforming to ASTM E 112 tensile strength of the austenitic stainless steel material is 800 MPa or more, and the difference between the maximum value and the minimum value of the tensile strength is 50 MPa or smaller. The number of alloy carbo-nitrides having a circle equivalent diameter of larger than 1000 nm in the steel is 10/mm2 or more.
    Type: Application
    Filed: April 4, 2017
    Publication date: April 18, 2019
    Inventors: Takamitsu Takagi, Jun Nakamura, Masaki Ueyama, Masaaki Terunuma
  • Patent number: 10259391
    Abstract: This side mirror device includes: a mirror base; a housing a bearing mechanism; a mirror; an inclining mechanism; an internal housing; and a cover, wherein the bearing mechanism and the inclining mechanism are contained in an interior of the housing, and wherein the bearing mechanism and the inclining mechanism are formed so as to face each other across the mirror base along an axis line of the bearing mechanism, wherein the housing has an upper cover and a lower cover that are disposed so as to face each other, wherein the upper cover and the lower cover whose outer surface shapes form an mirror-image symmetry with each other, wherein the cover forms, on a rear side, an opening edge portion that exposes the mirror, wherein the opening edge portion is made of an involuted recess portion that is a rear-side end portion of the cover being bent inwardly toward the mirror, and wherein with the rear-side end portion of the internal housing is inserted into the involuted recess portion, the rear-side end portion of
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 16, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Tomoaki Sakai, Takeshi Ishikawa, Jun Nakamura, Makoto Sawada
  • Patent number: 10260125
    Abstract: There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/?m2 or larger in cross section observation.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: April 16, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomohiko Omura, Jun Nakamura, Hirokazu Okada, Hiroyuki Semba, Yusaku Tomio, Hiroyuki Hirata, Masaaki Igarashi, Kazuhiro Ogawa, Masaaki Terunuma
  • Patent number: 10202788
    Abstract: A door outer handle which can be easily attached to an outer panel from the outside and in which the size of a counter weight is sufficiently ensured is provided. A door outer handle has an elongated shape. A hinge portion provided at one end of the door outer handle is inserted into a first attachment hole, and a counter weight provided at the other end of the door outer handle is inserted into a second attachment hole. An outer circumferential surface of the counter weight, which is located farthest from a contact point, is formed in an arc shape with a first radius, centered at the contact point. Furthermore, an inner circumferential surface of the counter weight, which is located closer to the contact point than the outer circumferential surface, is also formed in an arc shape with a second radius, centered at the contact point.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: February 12, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yohei Inai, Jun Nakamura
  • Publication number: 20190025748
    Abstract: A sheet conveyance apparatus, including: a first oblique-feed unit and a second oblique-feed unit configured to convey the sheet while approaching the sheet to an abutment surface; a changeover unit configured to change over an abutment pressure of the first oblique-feed unit on the sheet; and a control unit configured to execute a first operation for driving the first oblique-feed unit at a first speed and the second oblique-feed unit at a second speed and a second operation for driving the first oblique-feed unit at a third speed higher than the first speed and the second oblique-feed unit at a fourth speed higher than the second speed after the sheet is abutted against the abutment surface by the first operation, wherein the control unit controls the changeover unit so that the abutment pressure of the first oblique-feed unit in the second operation is higher than in the first operation.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 24, 2019
    Inventors: Jun Nakamura, So Matsumoto
  • Patent number: 10115958
    Abstract: A manufacturing method of an electric storage device includes: a current collector assembly step of disposing a current collector between an electrolyte solution pouring opening and a power generating element so as to block a view of the power generating element from the electrolyte solution pouring opening; an electrolyte solution pouring step of pouring an electrolyte solution through the electrolyte solution pouring opening; and a sealing step of disposing a sealing member at the electrolyte solution pouring opening and sealing the electrolyte solution pouring opening by welding.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 30, 2018
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventors: Masakazu Tsutsumi, Motoki Hoshino, Jun Nakamura, Shinsuke Yoshitake, Takeshi Sasaki
  • Publication number: 20180264105
    Abstract: The purpose of the present invention is to provide double-stranded oligonucleotides comprising the CpG oligonucleotide mentioned below, as a nucleic acid derivative having an immunostimulatory activity. An adjuvant comprising a double-stranded oligonucleotide, wherein a first strand is a CpG oligonucleotide consisting of 8 to 50 nucleotides, a second strand is an oligonucleotide consisting of 8 to 60 nucleotides and comprising a sequence capable of hybridizing with the first strand, and a lipid binds to the second strand through a linker.
    Type: Application
    Filed: February 28, 2018
    Publication date: September 20, 2018
    Applicant: Shionogi & Co., Ltd.
    Inventors: Akira KUGIMIYA, Tetsuya TANINO, Mitsuaki SEKIGUCHI, Yasunori MITSUOKA, Norikazu KURODA, Jun NAKAMURA
  • Publication number: 20180258505
    Abstract: An austenitic stainless steel with improved strength, ductility and weldability is provided. An austenitic stainless steel has a chemical composition of, in mass %: 0.005 to 0.07% C; 0.1 to 1.2% Si; 3.2 to 6.5% Mn; 9 to 14% Ni; a total of not less than 0.005% and less than 3% of at least one of Cu and Co; 19 to 24% Cr; 1 to 4% Mo; 0.05 to 0.4% Nb; 0.15 to 0.50% N; up to 0.05% Al; up to 0.03% P; up to 0.002% S; up to 0.02% O; 0 to 0.5% V; 0 to 0.5% Ti; 0 to 0.01% B; 0 to 0.05% Ca; 0 to 0.05% Mg; 0 to 0.5% REM; and the balance being Fe and impurities, where the amount of Nb analyzed as residues after electrolytic extraction is 0.01 to 0.3 mass %.
    Type: Application
    Filed: July 6, 2016
    Publication date: September 13, 2018
    Inventors: Hiroyuki Hirata, Kana Jotoku, Tomohiko Omura, Jun Nakamura, Masaaki Terunuma, Takahiro Osuki, Masaki Ueyama
  • Publication number: 20180210040
    Abstract: A magnetic detection device that is reduced in size and thickness, but also accurate, includes a substrate and an element disposed on the substrate and including a magneto-sensitive wire sensing an external magnetic field component in an extending direction and a detection coil looping around the magneto-sensitive wire. The magnetic detection device further includes a magnetic field deflector deflecting an external magnetic field around the magneto-sensitive wire, and having a nonmagnetic material core part and a soft magnetic material shell part covering an outer side of at least part of the core part. The magnetic field deflector has a hollow, rather than solid, structure of soft magnetic material. The soft magnetic material volume is therefore significantly smaller, and the hysteresis caused in the magnetic field deflector is remarkably reduced. With the magnetic detection device, the magnetic field component orthogonal to the substrate is also detected with higher accuracy.
    Type: Application
    Filed: June 21, 2016
    Publication date: July 26, 2018
    Applicant: AICHI STEEL CORPORATION
    Inventors: Takashi SHIMOTO, Jun NAKAMURA, Ryusuke YAMASHITA, Tomohiko NAGAO, Michiharu YAMAMOTO
  • Patent number: 9929386
    Abstract: There is provided a battery assembly wherein assembly can be facilitated by reducing the number of components to be assembled, by integrally fixing resin plates (52, 62) on the inside of metal plates (51, 61) of end plates (5, 6). A laminated battery body (3) is constituted by adjacently arranging battery holders (2) made of resin forming cooling passages (4) between a plurality of batteries (1) and holding such batteries (1) on both sides between other batteries (1). The metal plates (51, 61) and resin plates (52, 62) that are integrally fixed on the inside of these metal plates are provided on the outside of the batteries (1) at both ends of the laminated battery body (3). Thus, the batteries (1) are held by the resin plates (52, 62), and the end plates (5, 6) are respectively arranged to form the cooling passages (4) between these batteries (1) and the metal plates (51, 61). The laminated battery body (3) is fixed in a clamped manner by fixing means clamping these end plates (5, 6).
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: March 27, 2018
    Assignee: GS YUASA INTERNATIONAL LTD.
    Inventors: Shinsuke Yoshitake, Katsuhiko Okamoto, Jun Nakamura, Takeshi Sasaki
  • Patent number: 9902248
    Abstract: A vehicle-use seal structure is provided with a seal member which is attached to a door opening part. The seal member has the following: a seal base part which is attached to a seal attachment wall by a plurality of clips; a first seal lip provided to a connection part of the seal base part; and a second lip seal provided to the connection part. The first lip seal abuts a flange part of a front side door. The second lip seal abuts an orthogonal part that is substantially orthogonal to the flange part and extends in the vehicle interior direction.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 27, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yohei Inai, Hiroshi Tokuyama, Jun Nakamura