Patents by Inventor Jun Peng

Jun Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911552
    Abstract: A combined bio-artificial liver support system, includes branch tubes that are connected in sequence: a blood input branch tube, an upstream tail end, a first plasma separation branch tube comprising at least a first plasma separator, a non-biological purification branch tube comprising at least a plasma perfusion device and a bilirubin adsorber, a biological purification branch tube comprising at least a hepatocyte culture cartridge assembly, and a plasma return branch tube, a downstream tail end of which is set as a blood output end.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: February 27, 2024
    Assignee: Southern Medical University Zhujiang Hospital
    Inventors: Yi Gao, Mingxin Pan, Lei Feng, Yang Li, Lei Cai, Guolin He, Jun Weng, Qing Peng
  • Patent number: 11901561
    Abstract: A positive electrode sheet includes a current collector including a coating region and a non-coating region, a resistance layer disposed on the current collector and including a conductive agent, a first binder, and a first positive electrode active material, and a positive electrode active material layer including a second positive electrode active material, a conductive agent, and a second binder. A resistance of the resistance layer is greater than a resistance of the positive electrode active material layer. In a cross section of the positive electrode sheet, a projection of at least a part of the positive electrode active material layer on the current collector and a projection of the resistance layer on the current collector do not overlap. A polarization parameter P of the positive electrode sheet is in a range of 0.4-65.0 and equals ((1?S)/S)·(R1/R2).
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: February 13, 2024
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Quanguo Li, Yonghuang Ye, Songjun Shi, Qian Liu, Jun Peng, Fajun Huang
  • Patent number: 11892841
    Abstract: A set of sensor information may include first sensor information generated based on a first sensor of a first vehicle and second sensor information generated based on a second sensor of a second vehicle. Individual sensor information may characterize positions of objects in an environment of individual sensors. Relevant sensor information for a vehicle may be determined based on the set of sensor information and a position of the vehicle. The relevant sensor information may characterize positions of objects in a maneuver environment of the vehicle. A desired navigation of the vehicle in the maneuver environment of the vehicle may be determined based on the relevant sensor information. An instruction may be provided to the vehicle based on the desired navigation of the vehicle. The instruction may characterize one or more maneuvers to be performed by the vehicle to execute the desired navigation.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: February 6, 2024
    Assignee: Pony AI Inc.
    Inventors: Jianan Wang, Nengxiu Deng, Xiang Yu, Tiancheng Lou, Jun Peng, Kai Chen, Hao Song
  • Publication number: 20240037179
    Abstract: A data processing method and data processing apparatus are provided. The data processing method includes: acquiring multiple input tensors as input parameters for calculation process; for each input tensor, using M input sub-tensors that are combined to represent the input tensor; for each of the input tensors, replacing the input tensors with the M input sub-tensors that are combined to represent the input tensor, and performing the calculation process to obtain a calculation result. The data processing method increases the applicable scenarios of calculation process, effectively utilizes the powerful calculation ability of the originally provided low-accuracy floating points, and greatly improves the overall calculation efficiency.
    Type: Application
    Filed: November 10, 2022
    Publication date: February 1, 2024
    Applicant: Shanghai Biren Technology Co.,Ltd
    Inventors: Shuangshuang WU, Yunpeng WANG, Jun PENG, Liucheng DUAN, Hang YANG, Xiaoyang LI, Lingjie XU, HaiChuan WANG, Shu CHEN
  • Publication number: 20230372639
    Abstract: A pressurized nebulizer includes a nozzle, a peristaltic pump, and an elastic braided hose. The peristaltic pump includes a fixing part, a mating part, a rotating base and a roller. When the mating part and the fixing part are in a closed state, the elastic braided hose is arranged between the mating part and the fixing part, and between the mating part and the roller. An output end of the elastic braided hose is connected with the nozzle. The roller in the working stroke has a limit position of extruding the elastic braided hose to a limit state, a minimum clearance formed between the roller and the mating part is 1.5 T?P?1.9 T, where T denotes a unilateral wall thickness of the elastic braided hose, and P denotes the minimum clearance. The nebulizer can avoids liquid contact contamination, provide a stable output and have accurate accuracy.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Jun Peng, Wei Kang, Yulong Deng
  • Publication number: 20230323567
    Abstract: The present invention discloses a hollow fiber membrane material for a high-humidification hydrogen fuel cell humidifier and a preparation method and application thereof, and belongs to the technical field of fuel cell materials. The present invention provides a hollow fiber membrane material, and the preparation method includes: mixing and dissolving sulfonated polyarylene ether nitrile resin, a pore-forming agent, a modified nano-filler and a solvent for still standing; performing vacuumizing; coagulating a spinning fluid in an internal coagulant bath and an external coagulant bath; and washing and drying an obtained crude product to obtain the hollow fiber membrane material.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Yumin Huang, Miao Wu, Yifei Shi, Jun Peng, Tong Cao, Linbo Wang
  • Patent number: 11779082
    Abstract: A lace guide for an article of footwear comprises a base, a body protruding from the base, and an enlarged head at a distal end of the body. The body, the base, and the enlarged head define an external channel that extends at least partially around the body to receive and retain a lace. The base may be a heel counter, and the lace guide and the heel counter may be an integral, one-piece component. Alternatively, the base of the lace guide may be a wing extending along a side of the upper, or may be secured to a footwear upper.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: October 10, 2023
    Assignee: NIKE, Inc.
    Inventors: Leo S. Chang, Kristina L. S. Kurcinka, Jun Peng
  • Patent number: 11774978
    Abstract: A computer-implemented method and a system for training a computer-based autonomous driving model used for an autonomous driving operation by an autonomous vehicle are described. The method includes: creating time-dependent three-dimensional (3D) traffic environment data using at least one of real traffic element data and simulated traffic element data; creating simulated time-dependent 3D traffic environmental data by applying a time-dependent 3D generic adversarial network (GAN) model to the created time-dependent 3D traffic environment data; and training a computer-based autonomous driving model using the simulated time-dependent 3D traffic environmental data.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: October 3, 2023
    Assignee: Pony AI Inc.
    Inventors: Hao Song, Jun Peng, Nengxiu Deng, Sinan Xiao, Tao Qin, Tiancheng Lou, Tianyi Li, Xiang Yu, Yubo Zhang
  • Publication number: 20230307927
    Abstract: A control method of a battery apparatus includes acquiring a state parameter of a first battery module of the battery apparatus, controlling the first battery module and a charging device to form a first charging loop in response to the state parameter of the first battery module being less than a preset threshold, and controlling the first battery module, a second battery module of the battery apparatus, and the charging device to be connected in series to form a second charging loop in response to the state parameter of the first battery module being greater than or equal to the preset threshold. A charging rate of the first charging loop is higher than a charging rate of the second charging loop.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 28, 2023
    Inventors: Quanguo LI, Qian LIU, Yonghuang YE, Haizu JIN, Fajun HUANG, Xiaofu XU, Jun PENG
  • Patent number: 11733072
    Abstract: A sensor enclosure comprises a cover and a structure. The structure can be encased by the cover. The structure comprises a frame, a ring, and one or more anchoring posts. The frame can be configured to mount one or more sensors. The ring, disposed peripherally to the frame, can be operatively coupled to the cover. The ring can include a drainage ring plate that drains rainwater accumulated on the cover away from the sensor enclosure. The one or more anchoring posts, disposed underneath the frame and the ring, can be used to anchor the sensor enclosure to a vehicle.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: August 22, 2023
    Assignee: Pony AI Inc.
    Inventors: Zhongnan Hu, Zuoteng Chen, Nengxiu Deng, Cheng Jin, Kai Chen, Yubo Zhang, Xiang Yu, Tiancheng Lou, Jun Peng
  • Patent number: 11716542
    Abstract: An adaptive filter system and a method for controlling the adaptive filter system are described herein. The system can includes one or more filters to attenuate incoming light. The one or more filters can be moved by one or more actuators. The method can capture image data from an imaging device through the one or more filters. Information can be determined from the captured image data. The one or more filters can be moved to a position for capturing image data based on the information.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: August 1, 2023
    Assignee: Pony AI Inc.
    Inventors: Kai Chen, Jun Peng, Tiancheng Lou, Xiang Yu, Zhuo Zhang, Hao Song, Sinan Xiao, Yiming Liu, Tianyi Li
  • Publication number: 20230228599
    Abstract: A sensor enclosure comprises a cover and a structure. The structure can be encased by the cover. The structure comprises a frame, a ring, and one or more anchoring posts. The frame can be configured to mount one or more sensors. The ring, disposed peripherally to the frame, can be operatively coupled to the cover. The ring can include a drainage ring plate that drains rainwater accumulated on the cover away from the sensor enclosure. The one or more anchoring posts, disposed underneath the frame and the ring, can be used to anchor the sensor enclosure to a vehicle.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 20, 2023
    Inventors: Zhongnan Hu, Zuoteng Chen, Nengxiu Deng, Cheng Jin, Kai Chen, Yubo Zhang, Xiang Yu, Tiancheng Lou, Jun Peng
  • Publication number: 20230189925
    Abstract: A sole structure for an article of footwear including a forefoot region disposed adjacent an anterior end, a heel region disposed adjacent a posterior end, a bottom cushion extending from the heel region to the forefoot region, a heel cushion coupled to a top surface of the bottom cushion in the heel region, and a support plate coupled to a top surface of the heel cushion in the heel region. The sole structure further includes a top surface of the bottom cushion in the forefoot region and a top cushion coupled to a top surface of the support plate.
    Type: Application
    Filed: December 9, 2022
    Publication date: June 22, 2023
    Applicant: NIKE, Inc.
    Inventors: Lindsey Kirsten ANDREASEN, Nathan DURFLINGER, Eric FAUBLE, Jun PENG, Evan PERKINS, Jessica SMALL
  • Patent number: 11668637
    Abstract: A data processing method includes: collecting test data of a target rock sample in different gas adsorption experiments; the test data including pore sizes and pore volumes corresponding to the pore sizes and including at least two selected from the group consisting of the test data with pore sizes less than 3 nm in CO2 adsorption experiment, the test data with pore sizes in 1.5 nm to 250 nm in N2 adsorption experiment and the test data with pore sizes in 10 nm to 1000 ?m in high-pressure mercury adsorption experiment; and fitting the test data in overlapping ranges of the pore sizes using a least square method, and obtaining target pore volumes corresponding to the pore sizes respectively. The accuracy of joint characterization of shale pore structures can be improved by using mathematical methods to process the data in overlapping ranges of pore sizes among different characterization methods.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: June 6, 2023
    Assignees: SOUTHWEST PETROLEUM UNIVERSITY, CHINA UNIVERSITY OF GEOSCIENCES, WUHAN
    Inventors: Kun Zhang, Shu Jiang, Jun Peng, Xiaoming Zhao, Bin Li, Lei Chen, Pei Liu, Xuejiao Yuan, Fengli Han, Xueying Wang
  • Publication number: 20230170491
    Abstract: A positive electrode sheet includes a current collector including a coating region and a non-coating region, a resistance layer disposed on the current collector and including a conductive agent, a first binder, and a first positive electrode active material, and a positive electrode active material layer including a second positive electrode active material, a conductive agent, and a second binder. A resistance of the resistance layer is greater than a resistance of the positive electrode active material layer. In a cross section of the positive electrode sheet, a projection of at least a part of the positive electrode active material layer on the current collector and a projection of the resistance layer on the current collector do not overlap. A polarization parameter P of the positive electrode sheet is in a range of 0.4-65.0 and equals ((1?S)/S)·(R1/R2).
    Type: Application
    Filed: December 20, 2022
    Publication date: June 1, 2023
    Inventors: Quanguo LI, Yonghuang YE, Songjun SHI, Qian LIU, Jun PENG, Fajun HUANG
  • Publication number: 20230096906
    Abstract: A data processing method includes: collecting test data of a target rock sample in different gas adsorption experiments; the test data including pore sizes and pore volumes corresponding to the pore sizes and including at least two selected from the group consisting of the test data with pore sizes less than 3 nm in CO2 adsorption experiment, the test data with pore sizes in 1.5 nm to 250 nm in N2 adsorption experiment and the test data with pore sizes in 10 nm to 1000 ?m in high-pressure mercury adsorption experiment; and fitting the test data in overlapping ranges of the pore sizes using a least square method, and obtaining target pore volumes corresponding to the pore sizes respectively. The accuracy of joint characterization of shale pore structures can be improved by using mathematical methods to process the data in overlapping ranges of pore sizes among different characterization methods.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 30, 2023
    Inventors: Kun Zhang, Shu Jiang, Jun Peng, Xiaoming Zhao, Bin Li, Lei Chen, Pei Liu, Xuejiao Yuan, Fengli Han, Xueying Wang
  • Patent number: 11609108
    Abstract: A sensor enclosure comprises a cover and a structure. The structure can be encased by the cover. The structure comprises a frame, a ring, and one or more anchoring posts. The frame can be configured to mount one or more sensors. The ring, disposed peripherally to the frame, can be operatively coupled to the cover. The ring can include a drainage ring plate that drains rainwater accumulated on the cover away from the sensor enclosure. The one or more anchoring posts, disposed underneath the frame and the ring, can be used to anchor the sensor enclosure to a vehicle.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: March 21, 2023
    Assignee: Pony AI Inc.
    Inventors: Zhongnan Hu, Zuoteng Chen, Nengxiu Deng, Cheng Jin, Kai Chen, Yubo Zhang, Xiang Yu, Tiancheng Lou, Jun Peng
  • Publication number: 20230044787
    Abstract: Disclosed are a compound as represented by general formula (I), a cis-trans isomer thereof, an enantiomer thereof, a diastereoisomer thereof, a racemate thereof, a solvate thereof, a hydrate thereof, or a pharmaceutically acceptable salt thereof or a prodrug thereof, a preparation method therefor, a pharmaceutical composition comprising the compound and the use of the compound as an Lp-PLA2 inhibitor
    Type: Application
    Filed: November 9, 2020
    Publication date: February 9, 2023
    Inventors: Yun JIN, Jinhua WU, Jun PENG, Yong SUN
  • Patent number: 11560122
    Abstract: A sensor enclosure comprising a domed cover and a base. The base can be encased by the domed cover. The base comprises an inner frame, an outer frame, one or more wipers, and a powertrain. The inner frame can provide surfaces for one or more sensors. The outer frame, disposed underneath the inner frame, the outer frame includes a slewing ring. The slewing ring comprises an inner ring to which the domed cover is attached and an outer ring attached to the outer frame. The one or more wipers extends vertically from the outer frame, each wiper having a first end attached to the outer frame and a second end attached to a support ring, and each wiper making a contact with the dome cover. The powertrain, disposed within the outer frame, configured to rotate the ring and the dome cover attached to the inner ring.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: January 24, 2023
    Assignee: Pony AI Inc.
    Inventors: Zhongnan Hu, Zuoteng Chen, Nengxiu Deng, Cheng Jin, Kai Chen, Yubo Zhang, Xiang Yu, Tiancheng Lou, Jun Peng
  • Patent number: 11544100
    Abstract: The present invention provides a hardware acceleration method and a communications system. The hardware acceleration method includes: sending, by a network functions virtualization orchestrator (NFVO), first request information to a virtualized infrastructure manager (VIM), wherein the first request information is configured to request the VIM to deploy the to-be-accelerated VNF onto a host in a management domain of the VIM, wherein a hardware resource of the host meets a requirement of the to-be-accelerated VNF, and the requirement of the to-be-accelerated VNF includes information indicating a type of a required hardware acceleration resource and a size of the required hardware acceleration resource in the to-be-accelerated VNF; receiving, by the VIM, the first request information from the NFVO; and deploying, by the VIM, the to-be-accelerated VNF onto the host in the management domain of the VIM.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: January 3, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jun Peng, Zhan Peng, Xu Yang