Patents by Inventor JUN SUNG KANG

JUN SUNG KANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096896
    Abstract: Non-planar integrated circuit structures having mitigated source or drain etch from replacement gate process are described. For example, an integrated circuit structure includes a fin or nanowire. A gate stack is over the fin or nanowire. The gate stack includes a gate dielectric and a gate electrode. A first dielectric spacer is along a first side of the gate stack, and a second dielectric spacer is along a second side of the gate stack. The first and second dielectric spacers are over at least a portion of the fin or nanowire. An insulating material is vertically between and in contact with the portion of the fin or nanowire and the first and second dielectric spacers. A first epitaxial source or drain structure is at the first side of the gate stack, and a second epitaxial source or drain structure is at the second side of the gate stack.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Jun Sung KANG, Kai Loon CHEONG, Erica J. THOMPSON, Biswajeet GUHA, William HSU, Dax M. CRUM, Tahir GHANI, Bruce BEATTIE
  • Publication number: 20240083384
    Abstract: A vehicle seat reinforcement device includes a leg portion mounted on a floor panel, a seat cushion frame slidably mounted on the leg portion, and a load reinforcing structure connected between the leg portion and the seat cushion frame, wherein when a seat belt anchorage load is transferred to the seat cushion frame, the seat cushion frame is locked to the leg portion by the load reinforcing structure.
    Type: Application
    Filed: February 3, 2023
    Publication date: March 14, 2024
    Applicants: Hyundai Motor Company, Kia Corporation, Daechang Seat Co.,LTD-Dongtan, Hyundai Transys Inc.
    Inventors: Sang Soo LEE, Chan Ho JUNG, Mu Young KIM, Sang Hark LEE, Ho Suk JUNG, Deok Soo LIM, Sang Do PARK, In Sun BAEK, Sin Chan YANG, Chan Ki CHO, Myung Soo LEE, Jae Yong JANG, Jun Sik HWANG, Ho Sung KANG, Hae Dong KWAK, Hyun Tak KO
  • Publication number: 20240088296
    Abstract: A nanowire device includes one or more nanowire having a first end portion, a second end portion, and a body portion between the first end portion and the second end portion. A first conductive structure is in contact with the first end portion and a second conductive structure is in contact with the second end portion. The body portion of the nanowire has a first cross-sectional shape and the first end portion has a second cross-sectional shape different from the first cross-sectional shape. Integrated circuits including the nanowire device and a method of cleaning a semiconductor structure are also disclosed.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Erica J. THOMPSON, Aditya Kasukurti, Jun Sung Kang, Kai Loon Cheong, Biswajeet Guha, William Hsu, Bruce Beattie
  • Patent number: 11929396
    Abstract: A transistor structure includes a base and a body over the base. The body comprises a semiconductor material and has a first end portion and a second end portion. A gate structure is wrapped around the body between the first end portion and the second end portion, where the gate structure includes a gate electrode and a dielectric between the gate electrode and the body. A source is in contact with the first end portion and a drain is in contact with the second end portion. A first spacer material is on opposite sides of the gate electrode and above the first end portion. A second spacer material is adjacent the gate structure and under the first end portion of the nanowire body. The second spacer material is below and in contact with a bottom surface of the source and the drain.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: March 12, 2024
    Assignee: Intel Corporation
    Inventors: William Hsu, Biswajeet Guha, Leonard Guler, Souvik Chakrabarty, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Patent number: 11901458
    Abstract: Gate all around semiconductor devices, such as nanowire or nanoribbon devices, are described that include a low dielectric constant (“low-k”) material disposed between a first nanowire closest to the substrate and the substrate. This configuration enables gate control over all surfaces of the nanowires in a channel region of a semiconductor device via the high-k dielectric material, while also preventing leakage current from the first nanowire into the substrate.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Bruce E. Beattie, Leonard Guler, Biswajeet Guha, Jun Sung Kang, William Hsu
  • Patent number: 11869891
    Abstract: Non-planar integrated circuit structures having mitigated source or drain etch from replacement gate process are described. For example, an integrated circuit structure includes a fin or nanowire. A gate stack is over the fin or nanowire. The gate stack includes a gate dielectric and a gate electrode. A first dielectric spacer is along a first side of the gate stack, and a second dielectric spacer is along a second side of the gate stack. The first and second dielectric spacers are over at least a portion of the fin or nanowire. An insulating material is vertically between and in contact with the portion of the fin or nanowire and the first and second dielectric spacers. A first epitaxial source or drain structure is at the first side of the gate stack, and a second epitaxial source or drain structure is at the second side of the gate stack.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Jun Sung Kang, Kai Loon Cheong, Erica J. Thompson, Biswajeet Guha, William Hsu, Dax M. Crum, Tahir Ghani, Bruce Beattie
  • Patent number: 11869973
    Abstract: A nanowire device includes one or more nanowire having a first end portion, a second end portion, and a body portion between the first end portion and the second end portion. A first conductive structure is in contact with the first end portion and a second conductive structure is in contact with the second end portion. The body portion of the nanowire has a first cross-sectional shape and the first end portion has a second cross-sectional shape different from the first cross-sectional shape. Integrated circuits including the nanowire device and a method of cleaning a semiconductor structure are also disclosed.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Erica J. Thompson, Aditya Kasukurti, Jun Sung Kang, Kai Loon Cheong, Biswajeet Guha, William Hsu, Bruce Beattie
  • Patent number: 11715787
    Abstract: A method comprising: forming a substrate; forming a first nanowire over the substrate; forming a second nanowire over the substrate; forming a gate over a portion of the first and second nanowires; implanting a dopant such that a region between the first and second nanowires under the gate does not receive the dopant while a region between the first and second nanowires away from the gate receives the dopant, wherein the dopant amorphize a material of the region between the first and second nanowires away from the gate; and isotopically etching of the region between the first and second nanowires away from the gate.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: August 1, 2023
    Assignee: INTEL CORPORATION
    Inventors: Mark Armstrong, Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Publication number: 20220336668
    Abstract: Gate all around semiconductor devices, such as nanowire or nanoribbon devices, are described that include a low dielectric constant (“low-k”) material disposed between a first nanowire closest to the substrate and the substrate. This configuration enables gate control over all surfaces of the nanowires in a channel region of a semiconductor device via the high-k dielectric material, while also preventing leakage current from the first nanowire into the substrate.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Inventors: Bruce E. BEATTIE, Leonard GULER, Biswajeet GUHA, Jun Sung KANG, William HSU
  • Publication number: 20220246721
    Abstract: A transistor structure includes a base and a body over the base. The body comprises a semiconductor material and has a first end portion and a second end portion. A gate structure is wrapped around the body between the first end portion and the second end portion, where the gate structure includes a gate electrode and a dielectric between the gate electrode and the body. A source is in contact with the first end portion and a drain is in contact with the second end portion. A first spacer material is on opposite sides of the gate electrode and above the first end portion. A second spacer material is adjacent the gate structure and under the first end portion of the nanowire body. The second spacer material is below and in contact with a bottom surface of the source and the drain.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Applicant: INTEL CORPORATION
    Inventors: William HSU, Biswajeet GUHA, Leonard GULER, Souvik CHAKRABARTY, Jun Sung KANG, Bruce BEATTIE, Tahir GHANI
  • Patent number: 11404578
    Abstract: Gate all around semiconductor devices, such as nanowire or nanoribbon devices, are described that include a low dielectric constant (“low-?”) material disposed between a first nanowire closest to the substrate and the substrate. This configuration enables gate control over all surfaces of the nanowires in a channel region of a semiconductor device via the high-k dielectric material, while also preventing leakage current from the first nanowire into the substrate.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Bruce E. Beattie, Leonard Guler, Biswajeet Guha, Jun Sung Kang, William Hsu
  • Patent number: 11342411
    Abstract: A transistor structure includes a base and a body over the base. The body comprises a semiconductor material and has a first end portion and a second end portion. A gate structure is wrapped around the body between the first end portion and the second end portion, where the gate structure includes a gate electrode and a dielectric between the gate electrode and the body. A source is in contact with the first end portion and a drain is in contact with the second end portion. A first spacer material is on opposite sides of the gate electrode and above the first end portion. A second spacer material is adjacent the gate structure and under the first end portion of the nanowire body. The second spacer material is below and in contact with a bottom surface of the source and the drain.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: May 24, 2022
    Assignee: Intel Corporation
    Inventors: William Hsu, Biswajeet Guha, Leonard Guler, Souvik Chakrabarty, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Patent number: 11276691
    Abstract: Gate-all-around integrated circuit structures having self-aligned source or drain undercut for varied widths are described. In an example, a structure includes first and second vertical arrangements of nanowires above a substrate, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stack portions are over the first and second vertical arrangements of nanowires, respectively. First embedded epitaxial source or drain regions are at ends of the first vertical arrangement of nanowires and extend beneath dielectric sidewalls spacers of the first gate stack portion by a first distance. Second embedded epitaxial source or drain regions are at ends of the second vertical arrangement of nanowires and extend beneath the dielectric sidewalls spacers of the second gate stack portion by a second distance substantially the same as the first distance.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Stephen M. Cea, Tahir Ghani
  • Publication number: 20220052178
    Abstract: A method comprising: forming a substrate; forming a first nanowire over the substrate; forming a second nanowire over the substrate; forming a gate over a portion of the first and second nanowires; implanting a dopant such that a region between the first and second nanowires under the gate does not receive the dopant while a region between the first and second nanowires away from the gate receives the dopant, wherein the dopant amorphize a material of the region between the first and second nanowires away from the gate; and isotopically etching of the region between the first and second nanowires away from the gate.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Applicant: Intel Corporation
    Inventors: Mark Armstrong, Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Patent number: 11205715
    Abstract: A method comprising: forming a substrate; forming a first nanowire over the substrate; forming a second nanowire over the substrate; forming a gate over a portion of the first and second nanowires; implanting a dopant such that a region between the first and second nanowires under the gate does not receive the dopant while a region between the first and second nanowires away from the gate receives the dopant, wherein the dopant amorphize a material of the region between the first and second nanowires away from the gate; and isotopically etching of the region between the first and second nanowires away from the gate.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 21, 2021
    Assignee: INTEL CORPORATION
    Inventors: Mark Armstrong, Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Patent number: 11069795
    Abstract: Integrated circuits include fins including an upper/channel region and a lower/sub-channel region, the lower region having a first chemical composition and opposing sidewalls adjacent to an insulator material, and the upper region having a second chemical composition. A first width indicates the distance between the opposing sidewalls of the lower region at a first location is at least 1 nm wider than a second width indicating the distance between the opposing sidewalls of the upper region at a second location, the first location being within 10 nm of the second location (or otherwise relatively close to one another). The first chemical composition is distinct from the second chemical composition and includes a surface chemical composition at an outer surface of the opposing sidewalls of the lower region and a bulk chemical composition therebetween, the surface chemical composition including one or more of oxygen, nitrogen, carbon, chlorine, fluorine, and sulfur.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 20, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jun Sung Kang, Bruce E. Beattie, Anupama Bowonder, Biswajeet Guha, Ju H. Nam, Tahir Ghani
  • Patent number: 10944006
    Abstract: A trench is formed in an insulating layer to expose a native fin on a substrate. A replacement fin is deposited on the native fin in the trench. The replacement fin is trimmed laterally.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: March 9, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Chandra S. Mohapatra, Hei Kam, Nabil G. Mistkawi, Jun Sung Kang, Biswajeet Guha
  • Publication number: 20200411513
    Abstract: Integrated circuits include fins including an upper/channel region and a lower/sub-channel region, the lower region having a first chemical composition and opposing sidewalls adjacent to an insulator material, and the upper region having a second chemical composition. A first width indicates the distance between the opposing sidewalls of the lower region at a first location is at least 1 nm wider than a second width indicating the distance between the opposing sidewalls of the upper region at a second location, the first location being within 10 nm of the second location (or otherwise relatively close to one another). The first chemical composition is distinct from the second chemical composition and includes a surface chemical composition at an outer surface of the opposing sidewalls of the lower region and a bulk chemical composition therebetween, the surface chemical composition including one or more of oxygen, nitrogen, carbon, chlorine, fluorine, and sulfur.
    Type: Application
    Filed: September 28, 2017
    Publication date: December 31, 2020
    Applicant: INTEL CORPORATION
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jun Sung Kang, Bruce E. Beattie, Anupama Bowonder, Biswajeet Guha, Ju H. Nam, Tahir Ghani
  • Patent number: 10672868
    Abstract: Methods of forming self-aligned nanowire spacer structures are described. An embodiment includes forming a channel structure comprising a first nanowire and a second nanowire. Source/drain structures are formed adjacent the channel structure, wherein a liner material is disposed on at least a portion of the sidewalls of the source/drain structures. A nanowire spacer structure is formed between the first and second nanowires, wherein the nanowire spacer comprises an oxidized portion of the liner.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: June 2, 2020
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Glenn Glass, Anand Murthy, Jun Sung Kang, Seiyon Kim
  • Publication number: 20200152767
    Abstract: A method comprising: forming a substrate; forming a first nanowire over the substrate; forming a second nanowire over the substrate; forming a gate over a portion of the first and second nanowires; implanting a dopant such that a region between the first and second nanowires under the gate does not receive the dopant while a region between the first and second nanowires away from the gate receives the dopant, wherein the dopant amorphize a material of the region between the first and second nanowires away from the gate; and isotopically etching of the region between the first and second nanowires away from the gate.
    Type: Application
    Filed: August 21, 2017
    Publication date: May 14, 2020
    Applicant: Intel Corporation
    Inventors: Mark Armstrong, Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Tahir Ghani