Patents by Inventor Jun Urano

Jun Urano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8097440
    Abstract: The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: January 17, 2012
    Assignees: Gevo, Inc., California Institute of Technology
    Inventors: Thomas Buelter, Peter Meinhold, Reid M. Renny Feldman, Andrew C. Hawkins, Jun Urano, Sabine Bastian, Frances Arnold
  • Publication number: 20110318799
    Abstract: There is disclosed a method of producing isobutanol. In an embodiment, the method includes providing a microorganism transformed with an isobutanol producing pathway containing at least one exogenous gene. The microorganism is selected to produce isobutanol from a carbon source at a yield of at least 10 percent theoretical. The method includes cultivating the microorganism in a culture medium containing a feedstock providing the carbon source, until isobutanol is produced. The method includes recovering the isobutanol. In one embodiment, the microorganism is a yeast with a Crabtree-negative phenotype. In another embodiment, the microorganism is a yeast microorganism with a Crabtree-positive phenotype. There is disclosed a microorganism for producing isobutanol. In an embodiment, the microorganism includes an isobutanol producing pathway containing at least one exogenous gene, and is selected to produce a recoverable quantity of isobutanol from a carbon source at a yield of at least 10 percent theoretical.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: GEVO, INC.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos A. Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20110287500
    Abstract: The present invention provides recombinant microorganisms comprising isobutanol producing metabolic pathway with at least one isobutanol pathway enzyme localized in the cytosol, wherein said recombinant microorganism is selected to produce isobutanol from a carbon source. Methods of using said recombinant microorganisms to produce isobutanol are also provided. In various aspects of the invention, the recombinant microorganisms may comprise a cytosolically active isobutanol pathway enzymes. In some embodiments, the invention provides mutated, modified, and/or chimeric isobutanol pathway enzymes with cytosolic activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: July 5, 2011
    Publication date: November 24, 2011
    Applicant: GEVO, INC.
    Inventors: Jun URANO, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Ruth Berry, Ishmeet Kalra
  • Publication number: 20110275129
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 29, 2011
    Publication date: November 10, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Patent number: 8017375
    Abstract: There is disclosed a method of producing isobutanol. In an embodiment, the method includes providing a microorganism transformed with an isobutanol producing pathway containing at least one exogenous gene. The microorganism is selected to produce isobutanol from a carbon source at a yield of at least 10 percent theoretical. The method includes cultivating the microorganism in a culture medium containing a feedstock providing the carbon source, until isobutanol is produced. The method includes recovering the isobutanol. In one embodiment, the microorganism is a yeast with a Crabtree-negative phenotype. In another embodiment, the microorganism is a yeast microorganism with a Crabtree-positive phenotype. There is disclosed a microorganism for producing isobutanol. In an embodiment, the microorganism includes an isobutanol producing pathway containing at least one exogenous gene, and is selected to produce a recoverable quantity of isobutanol from a carbon source at a yield of at least 10 percent theoretical.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: September 13, 2011
    Assignee: Gevo, Inc.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos A. Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20110201090
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 18, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Kent Evans, Julie Kelly, Ruth Berry
  • Publication number: 20110201073
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 31, 2011
    Publication date: August 18, 2011
    Applicant: GEVO, INC.
    Inventors: Thomas Buelter, Andrew Hawkins, Stephanie Porter-Scheinman, Peter Meinhold, Catherine Asleson Dundon, Aristos Aristidou, Jun Urano, Doug Lies, Matthew Peters, Melissa Dey, Justas Jancauskas, Julie Kelly, Ruth Berry
  • Publication number: 20110183392
    Abstract: There is disclosed a method of producing isobutanol. In an embodiment, the method includes providing a microorganism transformed with an isobutanol producing pathway containing at least one exogenous gene. The microorganism is selected to produce isobutanol from a carbon source at a yield of at least 10 percent theoretical. The method includes cultivating the microorganism in a culture medium containing a feedstock providing the carbon source, until isobutanol is produced. The method includes recovering the isobutanol. In one embodiment, the microorganism is a yeast with a Crabtree-negative phenotype. In another embodiment, the microorganism is a yeast microorganism with a Crabtree-positive phenotype. There is disclosed a microorganism for producing isobutanol. In an embodiment, the microorganism includes an isobutanol producing pathway containing at least one exogenous gene, and is selected to produce a recoverable quantity of isobutanol from a carbon source at a yield of at least 10 percent theoretical.
    Type: Application
    Filed: January 29, 2010
    Publication date: July 28, 2011
    Applicant: GEVO, INC.
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20110076733
    Abstract: The present invention provides recombinant microorganisms comprising isobutanol producing metabolic pathway with at least one isobutanol pathway enzyme localized in the cytosol, wherein said recombinant microorganism is selected to produce isobutanol from a carbon source. Methods of using said recombinant microorganisms to produce isobutanol are also provided. In various aspects of the invention, the recombinant microorganisms may comprise a cytosolically active isobutanol pathway enzymes. In some embodiments, the invention provides mutated, modified, and/or chimeric isobutanol pathway enzymes with cytosolic activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 31, 2011
    Applicant: GEVO, INC.
    Inventors: Jun Urano, Catherine Asleson Dundon, Peter Meinhold, Reid M. Renny Feldman, Aristos Aristidou, Andrew Hawkins, Thomas Buelter, Matthew Peters, Doug Lies, Stephanie Porter-Scheinman, Ruth Berry, Ishmeet Kalra
  • Publication number: 20110020889
    Abstract: The present invention provides recombinant mircoorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise a modification resulting in the reduction of pyruvate decarboxylase and/or glycerol-3-phosphate dehydrogenase activity. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: June 22, 2010
    Publication date: January 27, 2011
    Inventors: Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano, Peter Meinhold, Aristos Aristidou, Catherine Asleson Dundon, Christopher Smith
  • Publication number: 20100143997
    Abstract: The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.
    Type: Application
    Filed: November 2, 2009
    Publication date: June 10, 2010
    Inventors: Thomas Buelter, Peter Meinhold, Reid M. Renny Feldman, Eva Eckl, Andrew Hawkins, Aristos Aristidou, Catherine Asleson Dundon, Doug Lies, Sabine Bastian, Frances Arnold, Jun Urano
  • Publication number: 20100062505
    Abstract: There are disclosed metabolically-engineered yeast and methods of producing n-butanol. In an embodiment, metabolically-engineered yeast is capable of metabolizing a carbon source to produce n-butanol, at least one pathway produces increased cytosolic acetyl-CoA relative to cytosolic acetyl-CoA produced by a wild-type yeast, and at least one heterologous gene encodes and expresses at least one enzyme for a metabolic pathway capable of utilizing NADH to convert acetyl-CoA to n-butanol. In another embodiment, a method of producing n-butanol includes (a) providing metabolically-engineered yeast capable of metabolizing a carbon source to produce n-butanol, at least one pathway produces increased cytosolic acetyl-CoA relative to cytosolic acetyl-CoA produced by a wild-type yeast, and at least one heterologous gene encodes and expresses at least one enzyme for a metabolic pathway utilizing NADH to convert acetyl-CoA to n-butanol; and (b) culturing the yeast to produce n-butanol. Other embodiments are also disclosed.
    Type: Application
    Filed: December 21, 2007
    Publication date: March 11, 2010
    Applicant: Gevo, Inc.
    Inventors: Uvini Gunawardena, Peter Meinhold, Matthew W. Peters, Jun Urano, Reid M. Renny Feldman
  • Publication number: 20090226991
    Abstract: There is disclosed a method of producing isobutanol. In an embodiment, the method includes providing a microorganism transformed with an isobutanol producing pathway containing at least one exogenous gene. The microorganism is selected to produce isobutanol from a carbon source at a yield of at least 10 percent theoretical. The method includes cultivating the microorganism in a culture medium containing a feedstock providing the carbon source, until isobutanol is produced. The method includes recovering the isobutanol. In one embodiment, the microorganism is a yeast with a Crabtree-negative phenotype. In another embodiment, the microorganism is a yeast microorganism with a Crabtree-positive phenotype. There is disclosed a microorganism for producing isobutanol. In an embodiment, the microorganism includes an isobutanol producing pathway containing at least one exogenous gene, and is selected to produce a recoverable quantity of isobutanol from a carbon source at a yield of at least 10 percent theoretical.
    Type: Application
    Filed: December 23, 2008
    Publication date: September 10, 2009
    Applicant: GEVO, INC.
    Inventors: Reid M. Renny FELDMAN, Uvini GUNAWARDENA, Jun URANO, Peter MEINHOLD, Aristos A. ARISTIDOU, Catherine Asleson DUNDON, Christopher SMITH