Patents by Inventor Jun Yoshimoto

Jun Yoshimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210027913
    Abstract: A wire conductor has a plurality of elemental wires made of aluminum or an aluminum alloy, which are stranded with each other and arranged, in cross-section intersecting an axial direction of the wire conductor, in which one or a plurality of virtual elemental wires are removed from an outer peripheral portion of a virtual cross-section represented by a maximum number of virtual elemental wires accommodated in a circumscribing figure approximated by a regular hexagon, the virtual elemental wires having a same diameter as the elemental wires. The wire conductor includes a plurality of slave strands, each being a strand of the plurality of elemental wires, a maximum diameter cross-sectional area ratio is 0.63 or higher that is calculated by dividing a cross-sectional area of the wire conductor by an area of a circle having a diameter equal to a maximum value of an outer diameter of the wire conductor.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 28, 2021
    Applicant: SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Takanori WAKAMATSU, Jun YOSHIMOTO
  • Patent number: 10818411
    Abstract: A wire conductor has a plurality of elemental wires made of aluminum or an aluminum alloy, which are stranded with each other and arranged, in cross-section intersecting an axial direction of the wire conductor, in which one or a plurality of virtual elemental wires are removed from an outer peripheral portion of a virtual cross-section represented by a maximum number of virtual elemental wires accommodated in a circumscribing figure approximated by a regular hexagon, the virtual elemental wires having a same diameter as the elemental wires. The wire conductor includes a plurality of slave strands, each being a strand of the plurality of elemental wires, a maximum diameter cross-sectional area ratio is 0.63 or higher that is calculated by dividing a cross-sectional area of the wire conductor by an area of a circle having a diameter equal to a maximum value of an outer diameter of the wire conductor.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 27, 2020
    Assignee: SUMITOMO WIRING SYSTEMS, LIMITED
    Inventors: Takanori Wakamatsu, Jun Yoshimoto
  • Publication number: 20200043630
    Abstract: A wire conductor has a plurality of elemental wires made of aluminum or an aluminum alloy, which are stranded with each other and arranged, in cross-section intersecting an axial direction of the wire conductor, in which one or a plurality of virtual elemental wires are removed from an outer peripheral portion of a virtual cross-section represented by a maximum number of virtual elemental wires accommodated in a circumscribing figure approximated by a regular hexagon, the virtual elemental wires having a same diameter as the elemental wires. The wire conductor includes a plurality of slave strands, each being a strand of the plurality of elemental wires, a maximum diameter cross-sectional area ratio is 0.63 or higher that is calculated by dividing a cross-sectional area of the wire conductor by an area of a circle having a diameter equal to a maximum value of an outer diameter of the wire conductor.
    Type: Application
    Filed: September 1, 2017
    Publication date: February 6, 2020
    Applicant: SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Takanori WAKAMATSU, Jun YOSHIMOTO
  • Patent number: 9953736
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: April 24, 2018
    Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD, SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Kotaro Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
  • Publication number: 20130255840
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Application
    Filed: May 17, 2013
    Publication date: October 3, 2013
    Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Yasuyuki OTSUKA, Masanobu YOSHIMURA, Kotaro MAEDA, Jun YOSHIMOTO, Masashi KIMURA, Taichirou NISHIKAWA, Misato KUSAKARI, Shinichi KITAMURA, Hiroaki TAKAI
  • Patent number: 8519269
    Abstract: A conductor of an electric wire, and an insulated wire which are excellent in corrosion resistance and recyclability, of which the strength which is decreased by weight reduction and diameter reduction is improved. The conductor includes a strand which includes a first elemental wire made from pure copper and a second elemental wire made from a copper alloy. In the conductor, a cross-sectional area of the first elemental wire as a percentage of a cross-sectional area of the conductor is preferably within a range of 10 to 90%. Examples of the copper alloy include a Cu—Ni—Si alloy, and a copper alloy containing Sn, Ag, Mg, or Zn. The conductor may be compressed concentrically. The insulated wire is prepared by covering the conductor with an insulator.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: August 27, 2013
    Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Soichirou Tsukamoto, Jun Yoshimoto, Yasuyuki Otsuka, Akihiko Tanaka
  • Patent number: 8476529
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: July 2, 2013
    Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Kotaro Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
  • Publication number: 20120042707
    Abstract: Included are a wire supply part, a wire pulling part, a first capstan mechanism part and a second capstan mechanism part. The first capstan mechanism part includes a plurality of first capstans, a first rotation drive source and a first rotation transmission mechanism part that transmits the rotation drive force of the first rotation drive source to the respective first capstans, and the second capstan mechanism part includes a plurality of second capstans and a plurality of second rotation drive sources that rotatively drive the respective second capstans in an individually manner. Dies are provided between ones of the respective first capstans and the respective second capstans.
    Type: Application
    Filed: February 16, 2010
    Publication date: February 23, 2012
    Applicant: SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Jun Yoshimoto, Shinji Kamei, Sho Hayakawa
  • Publication number: 20110247857
    Abstract: A conductor of an electric wire, and an insulated wire which are excellent in corrosion resistance and recyclability, of which the strength which is decreased by weight reduction and diameter reduction is improved. The conductor includes a strand which includes a first elemental wire made from pure copper and a second elemental wire made from a copper alloy. In the conductor, a cross-sectional area of the first elemental wire as a percentage of a cross-sectional area of the conductor is preferably within a range of 10 to 90%. Examples of the copper alloy include a Cu—Ni—Si alloy, and a copper alloy containing Sn, Ag, Mg, or Zn. The conductor may be compressed concentrically. The insulated wire is prepared by covering the conductor with an insulator.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 13, 2011
    Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Soichirou Tsukamoto, Jun Yoshimoto, Yasuyuki Otsuka, Akihiko Tanaka
  • Patent number: 8017869
    Abstract: A conductor of an electric wire, and an insulated wire which are excellent in corrosion resistance and recyclability, of which the strength which is decreased by weight reduction and diameter reduction is improved. The conductor includes a strand which includes a first elemental wire made from pure copper and a second elemental wire made from a copper alloy. In the conductor, a cross-sectional area of the first elemental wire as a percentage of a cross-sectional area of the conductor is preferably within a range of 10 to 90%. Examples of the copper alloy include a Cu—Ni—Si alloy, and a copper alloy containing Sn, Ag, Mg, or Zn. The conductor may be compressed concentrically. The insulated wire is prepared by covering the conductor with an insulator.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: September 13, 2011
    Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Soichirou Tsukamoto, Jun Yoshimoto, Yasuyuki Otsuka, Akihiko Tanaka
  • Publication number: 20110036614
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Application
    Filed: October 23, 2008
    Publication date: February 17, 2011
    Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Koutarou Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
  • Publication number: 20100018745
    Abstract: A conductor of an electric wire, and an insulated wire which are excellent in corrosion resistance and recyclability, of which the strength which is decreased by weight reduction and diameter reduction is improved. The conductor includes a strand which includes a first elemental wire made from pure copper and a second elemental wire made from a copper alloy. In the conductor, a cross-sectional area of the first elemental wire as a percentage of a cross-sectional area of the conductor is preferably within a range of 10 to 90%. Examples of the copper alloy include a Cu—Ni—Si alloy, and a copper alloy containing Sn, Ag, Mg, or Zn. The conductor may be compressed concentrically. The insulated wire is prepared by covering the conductor with an insulator.
    Type: Application
    Filed: December 27, 2007
    Publication date: January 28, 2010
    Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Soichirou Tsukamoto, Jun Yoshimoto, Yasuyuki Otsuka, Akihiko Tanaka
  • Publication number: 20090266575
    Abstract: An electric wire for an automobile has a core wire section and an outer circumferential wire section. The core wire section is formed by spirally winding six element wires around one element wire, where each element wire is made of stainless steel having elongation of 30% or more and tensile strength of 920 MPa or higher and the element wires have the same diameter in the range of 0.127 mm±10%. The circumferential wire section is formed by spirally winding twelve element wires around the core wire section, where the twelve element wires are wound close to each other in a single layer, each element wire is made of copper having tensile strength of 220 MPa or higher, and the element wires have the same diameter in the range of 0.127 mm±10%. The wire is light, small, strong and has good bending characteristics.
    Type: Application
    Filed: July 3, 2006
    Publication date: October 29, 2009
    Inventors: Jun Yoshimoto, Shinji Kamei
  • Publication number: 20030217864
    Abstract: A wire harness protective material comprising a tape-like substrate made of a nonhalogen-based resin or vinyl chloride resin coated with an adhesive comprising an acrylic resin as a main component on at least one side thereof. Preferably, the adhesive and/or the substrate comprises an age resistor and/or a copper inhibitor incorporated therein. The content of the age resistor is defined to be from 10% to 500% based on the content of the age resistor in the covering material for the wire coated with a nonhalogen-based resin in the bundle of wires on which the wire harness protective material is wound. The content of the copper inhibitor is defined to be from 0.001 to 5 parts by weight based on 100 parts by weight of the adhesive resin component or from 0.001 to 5 parts by weight based on 100 parts by weight of the substrate resin component.
    Type: Application
    Filed: November 19, 2002
    Publication date: November 27, 2003
    Applicant: Sumitomo Wiring Systems, Ltd.
    Inventors: Masanao Ishikawa, Mamoru Kondo, Tatsuya Hase, Yoshiharu Deguchi, Jun Yoshimoto, Tetsuya Nakamura, Genya Kawakita, Takamichi Yamashita, Hiroshi Hayami
  • Publication number: 20030207106
    Abstract: A harness-protecting material and wire harness comprises a base material which comprises two faces, at least one face of which is coated with an adhesive. The base material comprises a base organic material portion which includes a base polymer portion formed of a halogen-free resin or a substantially halogen-free resin. The adhesive comprises an adhesive adjuvant which contains at least one compound selected from the group consisting of a hydrogenated terpene-type resin, a hydrogenated aromatic resin, a hydrogenated aliplatic-type resin, a cumarone-indene type resin, a phenol-type resin and a styrene-type resin. The adhesive may contain acrylic acid-type resin as base polymer portion. The base material and/or adhesive may contain an anti-oxidizing agent, a copper damage inhibitor and/or an adsorbent. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: January 15, 2003
    Publication date: November 6, 2003
    Applicant: Sumitomo Wiring Systems, Ltd.
    Inventors: Tetsuya Nakamura, Mamoru Kondo, Tatsuya Hase, Yoshiharu Deguchi, Jun Yoshimoto, Genya Kawakita, Masanao Ishikawa, Takamichi Yamashita
  • Publication number: 20020033879
    Abstract: The present invention provides a remote face-to-face communication apparatus in which the user can exchange glance with other users and can check self-facial expression, connected to other communication apparatus to be used in the communication system for transmitting the images of the users between each communication apparatus comprising: shooting means disposed in the direction of the user's sight line, first display means for displaying the image received from other communication apparatuses, second display means for displaying the image shot by the shooting means, image transmitting means for distributing and transmitting the image shot by the shooting means to other communication apparatus and the second display means, wherein a half mirror being disposed on the optical axis of the shooting means and a mirror being disposed at the position opposing to the half mirror, whereby the image of the user passed through the half mirror is shot and the image displayed on the first display means is reflected off t
    Type: Application
    Filed: September 5, 2001
    Publication date: March 21, 2002
    Inventors: Jun Yoshimoto, Hiroyuki Yano
  • Patent number: 4343955
    Abstract: An improved method for selectively hydrogenating an alkylphenol to produce the corresponding cis-alkylcyclohexanol by employing a solid catalyst is disclosed. The catalyst useful in this method is a ruthenium catalyst supported on an alumina carrier. This catalyst exhibits excellent reactivity, selectivity and durability in the catalytic hydrogenation compared to conventional rhodium or ruthenium catalysts, such as ruthenium oxide and ruthenium catalysts supported on carbon. The alkylcyclohexanol product contains so much cis-isomer that it is suitable as such for use as an intermediate for the synthesis of varous chemicals, such as perfumes.
    Type: Grant
    Filed: March 6, 1979
    Date of Patent: August 10, 1982
    Assignees: Shin-Etsu Chemical Co., Ltd., Sankio Chemical Co., Ltd.
    Inventors: Mituyoshi Oshima, Jun Yoshimoto