Patents by Inventor Junbo Wu

Junbo Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210384366
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a barrier layer on a semiconductor region disposed in or above a substrate. The semiconductor region includes monocrystalline or polycrystalline silicon. The method also involves forming a conductive paste layer on the barrier layer. The method also involves forming a conductive layer from the conductive paste layer. The method also involves forming a contact structure for the semiconductor region of the solar cell, the contact structure including at least the conductive layer.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 9, 2021
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Junbo Wu, Michael Cudzinovic, Paul Loscutoff, Joseph Behnke, Michel Arsène Olivier Ngamo Toko
  • Patent number: 11133778
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 28, 2021
    Assignee: SunPower Corporation
    Inventors: Michael J. Defensor, Xiuwen Tu, Junbo Wu, David D. Smith
  • Patent number: 11127866
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a barrier layer on a semiconductor region disposed in or above a substrate. The semiconductor region includes monocrystalline or polycrystalline silicon. The method also involves forming a conductive paste layer on the barrier layer. The method also involves forming a conductive layer from the conductive paste layer. The method also involves forming a contact structure for the semiconductor region of the solar cell, the contact structure including at least the conductive layer.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: September 21, 2021
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Junbo Wu, Michael Cudzinovic, Paul Loscutoff, Joseph Behnke, Michel Arséne Olivier Ngamo Toko
  • Publication number: 20180191298
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: Michael J. DEFENSOR, Xiuwen TU, Junbo WU, David D. SMITH
  • Patent number: 9912290
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 6, 2018
    Assignee: SunPower Corporation
    Inventors: Michael J Defensor, Xiuwen Tu, Junbo Wu, David Smith
  • Publication number: 20160276504
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a barrier layer on a semiconductor region disposed in or above a substrate. The semiconductor region includes monocrystalline or polycrystalline silicon. The method also involves forming a conductive paste layer on the barrier layer. The method also involves forming a conductive layer from the conductive paste layer. The method also involves forming a contact structure for the semiconductor region of the solar cell, the contact structure including at least the conductive layer.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Junbo Wu, Michael Cudzinovic, Paul Loscutoff, Joseph Behnke, Michel Arsène Olivier Ngamo Toko
  • Patent number: 9437757
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 6, 2016
    Assignee: SunPower Corporation
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Publication number: 20160190364
    Abstract: Seed layers for solar cell conductive contacts and methods of forming seed layers for solar cell conductive contacts are described. For example, a solar cell includes a substrate. An emitter region is disposed above the substrate. A conductive contact is disposed on the emitter region and includes a conductive layer in contact with the emitter region. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al. In another example, a solar cell includes a substrate having a diffusion region at or near a surface of the substrate. A conductive contact is disposed above the diffusion region and includes a conductive layer in contact with the substrate. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Inventors: Michael Cudzinovic, Junbo Wu, Xi Zhu
  • Patent number: 9362427
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a barrier layer on a semiconductor region disposed in or above a substrate. The semiconductor region includes monocrystalline or polycrystalline silicon. The method also involves forming a conductive paste layer on the barrier layer. The method also involves forming a conductive layer from the conductive paste layer. The method also involves forming a contact structure for the semiconductor region of the solar cell, the contact structure including at least the conductive layer.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 7, 2016
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Junbo Wu, Michael Cudzinovic, Paul Loscutoff, Joseph Behnke, Michel Arsène Olivier Ngamo Toko
  • Publication number: 20160079914
    Abstract: A photovoltaic (PV) system is disclosed. The PV system can include a first and a second tracker that includes a first and a second plurality of PV collection devices. The PV system can include a first motor configured to adjust an angle of the first tracker. The PV system can include an inverter coupled to an output of the first plurality of PV collection devices. The inverter can include a first local controller comprising control circuitry configured to control the first motor. In an example, the inverter can be a string inverter. In one example, the inverter can a block inverter coupled to an output of the first and second plurality of PV collection devices. The PV system can also include a power collection unit, where the power collection unit can be coupled to the first plurality of PV collection devices and include the first local controller.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 17, 2016
    Inventors: Junbo Wu, Keith Johnston, Chen-An Chen, Zachary S. Judkins
  • Patent number: 9263601
    Abstract: Enhanced adhesion of seed layers for solar cell conductive contacts and methods of forming solar cell conductive contacts are described. For example, a method of fabricating a solar cell includes forming an adhesion layer above an emitter region of a substrate. A metal seed paste layer is formed on the adhesion layer. The metal seed paste layer and the adhesion layer are annealed to form a conductive layer in contact with the emitter region of the substrate. A conductive contact for the solar cell is formed from the conductive layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 16, 2016
    Assignee: SunPower Corporation
    Inventors: Junbo Wu, Michael C. Johnson, Michael Cudzinovic, Joseph Behnke, Xi Zhu, David D. Smith, Richard Sewell Hamilton, Xiuwen Tu, Seung Bum Rim
  • Publication number: 20150364625
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 17, 2015
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Patent number: 9082925
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 14, 2015
    Assignee: SunPower Corporation
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Publication number: 20150179836
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a barrier layer on a semiconductor region disposed in or above a substrate. The semiconductor region includes monocrystalline or polycrystalline silicon. The method also involves forming a conductive paste layer on the barrier layer. The method also involves forming a conductive layer from the conductive paste layer. The method also involves forming a contact structure for the semiconductor region of the solar cell, the contact structure including at least the conductive layer.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Inventors: Richard Hamilton Sewell, David Aaron Randolph Barkhouse, Junbo Wu, Michael Cudzinovic, Paul Loscutoff, Joseph Behnke, Michel Arsène Olivier Ngamo Toko
  • Publication number: 20140273331
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Publication number: 20140174518
    Abstract: Enhanced adhesion of seed layers for solar cell conductive contacts and methods of forming solar cell conductive contacts are described. For example, a method of fabricating a solar cell includes forming an adhesion layer above an emitter region of a substrate. A metal seed paste layer is formed on the adhesion layer. The metal seed paste layer and the adhesion layer are annealed to form a conductive layer in contact with the emitter region of the substrate. A conductive contact for the solar cell is formed from the conductive layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Junbo Wu, Michael C. Johnson, Michael Cudzinovic, Joseph Behnke, Xi Zhu, David D. Smith, Richard Sewell Hamilton, Xiuwen Tu, Seung Bum Rim
  • Publication number: 20140158192
    Abstract: Seed layers for solar cell conductive contacts and methods of forming seed layers for solar cell conductive contacts are described. For example, a solar cell includes a substrate. An emitter region is disposed above the substrate. A conductive contact is disposed on the emitter region and includes a conductive layer in contact with the emitter region. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al. In another example, a solar cell includes a substrate having a diffusion region at or near a surface of the substrate. A conductive contact is disposed above the diffusion region and includes a conductive layer in contact with the substrate. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Inventors: Michael Cudzinovic, Junbo Wu, Xi Zhu
  • Publication number: 20130333747
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Application
    Filed: September 26, 2012
    Publication date: December 19, 2013
    Inventors: Michael J. Defensor, Xiuwen Tu, Junbo Wu, David Smith